Missing Brain Hemisphere Tied to Fortified Neural Networks

A small study finds that patients who had half their brains removed to treat epilepsy have stronger neural networks than controls, perhaps explaining how they can retain language and cognition skills.

Written byKerry Grens
| 2 min read
hemispherectomy epilepsy fmri brain neural connections

Register for free to listen to this article
Listen with Speechify
0:00
2:00
Share

ABOVE: An fMRI brain scan from a study participant who had a hemispherectomy as a child
CALTECH BRAIN IMAGING CENTER

As a treatment for severe epilepsy, some children have half their brain surgically removed. Although these patients may end up with sensory, movement, or language deficits, remarkably, many of the kids are able to fully develop their cognitive and language skills. In a study of six adults who underwent hemispherectomy as kids published yesterday (November 19) in Cell Reports, scientists report that various neural connections between different brain regions were stronger among these patients than in other adults—a possible explanation for how children adapt after the surgery.

“The other hemisphere is already having to handle extra responsibilities before patients get treated,” Lynn Paul, a neuroscientist at Caltech and a coauthor of the study, tells The New York Times. “It continues to do so when you take out the damaged hemisphere.”

All ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Related Topics

Meet the Author

  • kerry grens

    Kerry served as The Scientist’s news director until 2021. Before joining The Scientist in 2013, she was a stringer for Reuters Health, the senior health and science reporter at WHYY in Philadelphia, and the health and science reporter at New Hampshire Public Radio. Kerry got her start in journalism as a AAAS Mass Media fellow at KUNC in Colorado. She has a master’s in biological sciences from Stanford University and a biology degree from Loyola University Chicago.

    View Full Profile
Share
Illustration of a developing fetus surrounded by a clear fluid with a subtle yellow tinge, representing amniotic fluid.
January 2026

What Is the Amniotic Fluid Composed of?

The liquid world of fetal development provides a rich source of nutrition and protection tailored to meet the needs of the growing fetus.

View this Issue
Redefining Immunology Through Advanced Technologies

Redefining Immunology Through Advanced Technologies

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Beckman Coulter Logo
Skip the Wait for Protein Stability Data with Aunty

Skip the Wait for Protein Stability Data with Aunty

Unchained Labs
Graphic of three DNA helices in various colors

An Automated DNA-to-Data Framework for Production-Scale Sequencing

illumina

Products

nuclera logo

Nuclera eProtein Discovery System installed at leading Universities in Taiwan

Brandtech Logo

BRANDTECH Scientific Introduces the Transferpette® pro Micropipette: A New Twist on Comfort and Control

Biotium Logo

Biotium Launches GlycoLiner™ Cell Surface Glycoprotein Labeling Kits for Rapid and Selective Cell Surface Imaging

Colorful abstract spiral dot pattern on a black background

Thermo Scientific X and S Series General Purpose Centrifuges

Thermo Fisher Logo