Mitochondria Swap

Researchers generate patient-specific induced pluripotent stem cells corrected for mitochondrial defects.

Written byKate Yandell
| 4 min read

Register for free to listen to this article
Listen with Speechify
0:00
4:00
Share

WIKIMEDIA, LOUISA HOWARDScientists have used two methods to generate patient-specific pluripotent stem cells with normal mitochondria for people with defects in these organelles, according to a study published today (July 15) in Nature. The first method generates stem cells for people with some normal mitochondria and some defective ones, a state called heteroplasmy. The researchers isolated fibroblasts from these patients and reprogrammed them to into multiple lines of induced pluripotent stem cells (iPSCs). They then tested these iPSC lines for mitochondrial mutations, selecting cells that had ended up with only nonmutated mitochondria following many cell divisions and mitochondrial redistributions. The second method, which works for patients who have no nonmutated mitochondria, involves transplanting these patients’ cell nuclei into healthy eggs with their own nuclei removed, a process called somatic cell nuclear transfer (SCNT).

“It’s a first step, but we will follow up with further research,” said study coauthor Shoukhrat Mitalipov, a professor at Oregon Health & Science University’s Center for Embryonic Cell and Gene Therapy in Portland. “Hopefully we will be going through some clinical trials using similar cells for patients with [mitochondrial DNA] diseases.”

Mitalipov and his colleagues are still trying to decide which tissues to treat with these new cells, and how to integrate the cells into the body. “I think anyone who is generating reparative stem cells has the same problem, and that is, how do you get them into the body if you are going to use them as cell therapy?” said Michael Teitell, a professor of pediatrics and pathology at University of California, ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here
Illustration of a developing fetus surrounded by a clear fluid with a subtle yellow tinge, representing amniotic fluid.
January 2026, Issue 1

What Is the Amniotic Fluid Composed of?

The liquid world of fetal development provides a rich source of nutrition and protection tailored to meet the needs of the growing fetus.

View this Issue
Skip the Wait for Protein Stability Data with Aunty

Skip the Wait for Protein Stability Data with Aunty

Unchained Labs
Graphic of three DNA helices in various colors

An Automated DNA-to-Data Framework for Production-Scale Sequencing

illumina
Exploring Cellular Organization with Spatial Proteomics

Exploring Cellular Organization with Spatial Proteomics

Abstract illustration of spheres with multiple layers, representing endoderm, ectoderm, and mesoderm derived organoids

Organoid Origins and How to Grow Them

Thermo Fisher Logo

Products

Brandtech Logo

BRANDTECH Scientific Introduces the Transferpette® pro Micropipette: A New Twist on Comfort and Control

Biotium Logo

Biotium Launches GlycoLiner™ Cell Surface Glycoprotein Labeling Kits for Rapid and Selective Cell Surface Imaging

Colorful abstract spiral dot pattern on a black background

Thermo Scientific X and S Series General Purpose Centrifuges

Thermo Fisher Logo
Abstract background with red and blue laser lights

VANTAstar Flexible microplate reader with simplified workflows

BMG LABTECH