Modeling Ebola in Mice

A genetically diverse group of mice represents the complete spectrum of human outcomes from Ebola virus infection.

Written byMolly Sharlach
| 3 min read

Register for free to listen to this article
Listen with Speechify
0:00
3:00
Share

A microscope image of liver tissue from a susceptible mouse infected with Ebola. Caspase cleavage (brown) reflects widespread cell death.ANGELA RASMUSSEN

Researchers investigating host responses to Ebola have long faced a significant disadvantage: the virus kills conventional lab mice, but does not produce the hemorrhagic fever or other classical symptoms that occur in humans. The lack of a mouse disease model has hampered studies on the pathology and immunology of Ebola infections, as well as the development of treatments.

A team led by Angela Rasmussen and Michael Katze of the University of Washington and Atsushi Okumura of the US National Institutes of Health (NIH) Rocky Mountain Laboratories has tested responses to Ebola in 47 genetically diverse mouse lines, demonstrating considerable variability in disease outcomes. The results, reported today (October 30) in Science, lay the groundwork for analyses of genetic differences in susceptibility to Ebola.

The study ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Related Topics

Meet the Author

Share
Illustration of a developing fetus surrounded by a clear fluid with a subtle yellow tinge, representing amniotic fluid.
January 2026, Issue 1

What Is the Amniotic Fluid Composed of?

The liquid world of fetal development provides a rich source of nutrition and protection tailored to meet the needs of the growing fetus.

View this Issue
Skip the Wait for Protein Stability Data with Aunty

Skip the Wait for Protein Stability Data with Aunty

Unchained Labs
Graphic of three DNA helices in various colors

An Automated DNA-to-Data Framework for Production-Scale Sequencing

illumina
Exploring Cellular Organization with Spatial Proteomics

Exploring Cellular Organization with Spatial Proteomics

Abstract illustration of spheres with multiple layers, representing endoderm, ectoderm, and mesoderm derived organoids

Organoid Origins and How to Grow Them

Thermo Fisher Logo

Products

Brandtech Logo

BRANDTECH Scientific Introduces the Transferpette® pro Micropipette: A New Twist on Comfort and Control

Biotium Logo

Biotium Launches GlycoLiner™ Cell Surface Glycoprotein Labeling Kits for Rapid and Selective Cell Surface Imaging

Colorful abstract spiral dot pattern on a black background

Thermo Scientific X and S Series General Purpose Centrifuges

Thermo Fisher Logo
Abstract background with red and blue laser lights

VANTAstar Flexible microplate reader with simplified workflows

BMG LABTECH