Modern Human Activities Muddle Analyses of Prehistoric Migrations

Agriculture and other land uses can distort the levels of an earth mineral marker used to map the origins and movements of ancient humans and animals, a new study finds.

Written byAnna Azvolinsky
| 4 min read
Vallerbæk Valley in Denmark

Register for free to listen to this article
Listen with Speechify
0:00
4:00
Share

ABOVE: Land in the Vallerbæk Valley in Denmark that has not been farmed. This location is one mile upstream of where the researchers sampled water from a stream entering farmland.
TINE RASMUSSEN, UNIVERSITY OF TROMSØ, NORWAY

One of the most widely used tools archaeologists have at their disposal to decipher where prehistoric humans lived and traveled is the element strontium. Because strontium isotope levels in remains match the concentrations in the surrounding landscape, scientists can track migrations. While the technique itself is sound, the baseline levels of strontium in different geographies may not reliably reflect ancient times as scientists have assumed.

Researchers from Aarhus University in Denmark published a report in Science Advances last week (March 13) showing that the data on strontium levels in soil and water used for these archaeological studies are not always accurate. With their new analysis, the team found that two Bronze Age human remains, Egtved ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Related Topics

Meet the Author

  • head shot of blond woman wearing glasses

    Anna Azvolinsky received a PhD in molecular biology in November 2008 from Princeton University. Her graduate research focused on a genome-wide analyses of genomic integrity and DNA replication. She did a one-year post-doctoral fellowship at Memorial Sloan Kettering Cancer Center in New York City and then left academia to pursue science writing. She has been a freelance science writer since 2012, based in New York City.

    View Full Profile
Share
Illustration of a developing fetus surrounded by a clear fluid with a subtle yellow tinge, representing amniotic fluid.
January 2026

What Is the Amniotic Fluid Composed of?

The liquid world of fetal development provides a rich source of nutrition and protection tailored to meet the needs of the growing fetus.

View this Issue
Human-Relevant In Vitro Models Enable Predictive Drug Discovery

Advancing Drug Discovery with Complex Human In Vitro Models

Stemcell Technologies
Redefining Immunology Through Advanced Technologies

Redefining Immunology Through Advanced Technologies

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Beckman Coulter Logo
Conceptual multicolored vector image of cancer research, depicting various biomedical approaches to cancer therapy

Maximizing Cancer Research Model Systems

bioxcell

Products

Sino Biological Logo

Sino Biological Pioneers Life Sciences Innovation with High-Quality Bioreagents on Inside Business Today with Bill and Guiliana Rancic

Sino Biological Logo

Sino Biological Expands Research Reagent Portfolio to Support Global Nipah Virus Vaccine and Diagnostic Development

Beckman Coulter

Beckman Coulter Life Sciences Partners with Automata to Accelerate AI-Ready Laboratory Automation

Refeyn logo

Refeyn named in the Sunday Times 100 Tech list of the UK’s fastest-growing technology companies