Molecule Found in Huntington’s Patients Kills Cancer Cells

Researchers were able to slow tumor growth in a mouse model of human ovarian cancer.

| 2 min read

Register for free to listen to this article
Listen with Speechify
0:00
2:00
Share

3-D image of the huntingtin geneWIKIMEDIA, EUROPEAN BIOINFORMATICS INSTITUTE, JAWAHAR SWAMINATHAN/MSD STAFF

Small interfering RNAs (siRNAs) responsible for brain damage in Huntington’s patients are also toxic to cancer cells, according to researchers at Northwestern University. The findings, published yesterday (February 12) in EMBO Reports, could provide a novel approach to cancer therapy.

Huntington’s is caused by trinucleotide repeat (TNR) expansions, excessive repeats of RNA sequences in the huntingtin gene, which generate proteins and RNA that gradually damage brain cells. Of these, small interfering RNAs (siRNAs) are also toxic to cancer cells, the researchers report.

Study coauthor Andrea Murmann of Northwestern University discovered the molecules’ cancer-fighting ability while she was investigating diseases in which patients have low rates of cancer for a “kill-switch” that was present in all cells. “I thought maybe there is a situation where this ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Keywords

Meet the Author

  • Jim Daley

    This person does not yet have a bio.
Share
3D illustration of a gold lipid nanoparticle with pink nucleic acid inside of it. Purple and teal spikes stick out from the lipid bilayer representing polyethylene glycol.
February 2025, Issue 1

A Nanoparticle Delivery System for Gene Therapy

A reimagined lipid vehicle for nucleic acids could overcome the limitations of current vectors.

View this Issue
Considerations for Cell-Based Assays in Immuno-Oncology Research

Considerations for Cell-Based Assays in Immuno-Oncology Research

Lonza
An illustration of animal and tree silhouettes.

From Water Bears to Grizzly Bears: Unusual Animal Models

Taconic Biosciences
Sex Differences in Neurological Research

Sex Differences in Neurological Research

bit.bio logo
New Frontiers in Vaccine Development

New Frontiers in Vaccine Development

Sino

Products

Tecan Logo

Tecan introduces Veya: bringing digital, scalable automation to labs worldwide

Explore a Concise Guide to Optimizing Viral Transduction

A Visual Guide to Lentiviral Gene Delivery

Takara Bio
Inventia Life Science

Inventia Life Science Launches RASTRUM™ Allegro to Revolutionize High-Throughput 3D Cell Culture for Drug Discovery and Disease Research

An illustration of differently shaped viruses.

Detecting Novel Viruses Using a Comprehensive Enrichment Panel

Twist Bio