Monogamous Rodents Don’t Need “Love Molecule” To Pair Up

Prairie voles lacking functional receptors for oxytocin form normal social bonds, a finding that could explain the hormone’s clinical failures.

Written byNatalia Mesa, PhD
| 4 min read
A pair of prairie voles (Microtus ochrogaster)
Register for free to listen to this article
Listen with Speechify
0:00
4:00
Share

Prairie voles mate for life. Much like humans, once voles form a pair bond—typically with a member of the opposite sex—they cohabitate, coparent, and even prefer each other’s company over that of other voles. Decades of research on the monogamous rodents have led to a better understanding of the so-called love molecule oxytocin, a hormone that studies have suggested is crucial for forming social bonds in prairie voles, humans, and various other species.

But new research published today (January 27) in Neuron has turned 40 years of oxytocin research on its head by showing that voles without oxytocin receptors still form pair bonds. The finding might hold clues as to why researchers have had mixed success in using oxytocin to treat conditions that disrupt the formation of social bonds, such as depression and autism, the authors say.

“I think that it really does require revisiting and reimagining of what we ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Related Topics

Meet the Author

  • A black and white headshot

    As she was completing her graduate thesis on the neuroscience of vision, Natalia found that she loved to talk to other people about how science impacts them. This passion led Natalia to take up writing and science communication, and she has contributed to outlets including Scientific American and the Broad Institute. Natalia completed her PhD in neuroscience at the University of Washington and graduated from Cornell University with a bachelor’s degree in biological sciences. She was previously an intern at The Scientist, and currently freelances from her home in Seattle. 

    View Full Profile
Share
Illustration of a developing fetus surrounded by a clear fluid with a subtle yellow tinge, representing amniotic fluid.
January 2026

What Is the Amniotic Fluid Composed of?

The liquid world of fetal development provides a rich source of nutrition and protection tailored to meet the needs of the growing fetus.

View this Issue
Human-Relevant In Vitro Models Enable Predictive Drug Discovery

Advancing Drug Discovery with Complex Human In Vitro Models

Stemcell Technologies
Redefining Immunology Through Advanced Technologies

Redefining Immunology Through Advanced Technologies

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Beckman Coulter Logo
Conceptual multicolored vector image of cancer research, depicting various biomedical approaches to cancer therapy

Maximizing Cancer Research Model Systems

bioxcell

Products

Refeyn logo

Refeyn named in the Sunday Times 100 Tech list of the UK’s fastest-growing technology companies

Parse Logo

Parse Biosciences and Graph Therapeutics Partner to Build Large Functional Immune Perturbation Atlas

Sino Biological Logo

Sino Biological's Launch of SwiftFluo® TR-FRET Kits Pioneers a New Era in High-Throughout Kinase Inhibitor Screening

SPT Labtech Logo

SPT Labtech enables automated Twist Bioscience NGS library preparation workflows on SPT's firefly platform