More than Sperm Support

Male mice lacking seminal vesicles father fewer offspring, and their sons suffer from abnormal metabolism into adulthood.

Written byJef Akst
| 4 min read

Register for free to listen to this article
Listen with Speechify
0:00
4:00
Share

Mouse in top panel was conceived in the presence of seminal fluid; mouse in the bottom panel was sired by a mouse that lacked seminal vesicles. PNAS, DOI/10.1073/PNAS.1305609111Male mice that have had their seminal vesicles removed can still father offspring, but their fertility is greatly reduced, according to a study published today (January 27) in PNAS. Moreover, male offspring that are sired by mice lacking seminal vesicles are noticeably fatter and exhibit signs of insulin resistance and other symptoms of metabolic syndrome.

“For a long time, seminal proteins have been sort of ignored, thought to be this passive medium in which the sperm are transferred, used [only] to nourish the sperm and keep the sperm viable,” said Mariana Wolfner, a Drosophila reproductive biologist at Cornell University who did not participate in the research. In recent years, however, work on insects and even some mammals has supported the notion that seminal fluid is doing something more, she added. “This paper is adding to this idea that these proteins are really important in communication between the sexes, [and] in modulating the females’ reproductive physiology to improve the outcome for both the male and the female.”

Sarah Robertson, a professor of reproductive immunology and biomedicine at the University of Adelaide ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Related Topics

Meet the Author

  • Jef (an unusual nickname for Jennifer) got her master’s degree from Indiana University in April 2009 studying the mating behavior of seahorses. After four years of diving off the Gulf Coast of Tampa and performing behavioral experiments at the Tennessee Aquarium in Chattanooga, she left research to pursue a career in science writing. As The Scientist's managing editor, Jef edited features and oversaw the production of the TS Digest and quarterly print magazine. In 2022, her feature on uterus transplantation earned first place in the trade category of the Awards for Excellence in Health Care Journalism. She is a member of the National Association of Science Writers.

    View Full Profile
Share
Illustration of a developing fetus surrounded by a clear fluid with a subtle yellow tinge, representing amniotic fluid.
January 2026, Issue 1

What Is the Amniotic Fluid Composed of?

The liquid world of fetal development provides a rich source of nutrition and protection tailored to meet the needs of the growing fetus.

View this Issue
Skip the Wait for Protein Stability Data with Aunty

Skip the Wait for Protein Stability Data with Aunty

Unchained Labs
Graphic of three DNA helices in various colors

An Automated DNA-to-Data Framework for Production-Scale Sequencing

illumina
Exploring Cellular Organization with Spatial Proteomics

Exploring Cellular Organization with Spatial Proteomics

Abstract illustration of spheres with multiple layers, representing endoderm, ectoderm, and mesoderm derived organoids

Organoid Origins and How to Grow Them

Thermo Fisher Logo

Products

Brandtech Logo

BRANDTECH Scientific Introduces the Transferpette® pro Micropipette: A New Twist on Comfort and Control

Biotium Logo

Biotium Launches GlycoLiner™ Cell Surface Glycoprotein Labeling Kits for Rapid and Selective Cell Surface Imaging

Colorful abstract spiral dot pattern on a black background

Thermo Scientific X and S Series General Purpose Centrifuges

Thermo Fisher Logo
Abstract background with red and blue laser lights

VANTAstar Flexible microplate reader with simplified workflows

BMG LABTECH