Moving Sea Turtle Eggs May Affect Hatchling Development

Hatchlings from eggs incubated in a natural nest were larger, exhibited faster neuronal development, and performed better on a motor activity test than those from eggs that were incubated in a hatchery, a study finds.

Written byMargaret Osborne
| 5 min read
Close-up of baby olive ridley sea turtle (Lepidochelys olivacea)
Register for free to listen to this article
Listen with Speechify
0:00
5:00
Share

Six of the seven sea turtle species are endangered because of myriad factors including climate change, poaching, and habitat destruction. Moving turtle eggs from beaches into hatcheries is a common practice to protect them from some of these threats—at least until they hatch. But a study published June 13 in Frontiers in Ecology and Evolution finds that this off-site or ex situ incubation may negatively affect the developing turtles.

A team of Mexico-based researchers examined 150 sea turtles to determine how ex situ incubation affects female hatchling development. Previous research from this team found that this strategy negatively affects male gonads, brains, body size, and fitness, but they wanted to test whether this applied to female hatchlings too.

The team selected ten random olive ridley (Lepidochelys olivacea) nests to study from a beach in Lázaro Cárdenas, Michoacán, México. “We selected the marine turtles of these species because they are in ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Related Topics

Meet the Author

  • Margaret Osborne

    Margaret Osborne is a freelance science journalist based in the Southwestern US. Her work has been published in Smithsonian magazine and Sag Harbor Express and has aired on WSHU Public Radio. She has a degree in journalism from Stony Brook University.

    View Full Profile
Share
Illustration of a developing fetus surrounded by a clear fluid with a subtle yellow tinge, representing amniotic fluid.
January 2026

What Is the Amniotic Fluid Composed of?

The liquid world of fetal development provides a rich source of nutrition and protection tailored to meet the needs of the growing fetus.

View this Issue
Human-Relevant In Vitro Models Enable Predictive Drug Discovery

Advancing Drug Discovery with Complex Human In Vitro Models

Stemcell Technologies
Redefining Immunology Through Advanced Technologies

Redefining Immunology Through Advanced Technologies

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Beckman Coulter Logo
Conceptual multicolored vector image of cancer research, depicting various biomedical approaches to cancer therapy

Maximizing Cancer Research Model Systems

bioxcell

Products

Refeyn logo

Refeyn named in the Sunday Times 100 Tech list of the UK’s fastest-growing technology companies

Parse Logo

Parse Biosciences and Graph Therapeutics Partner to Build Large Functional Immune Perturbation Atlas

Sino Biological Logo

Sino Biological's Launch of SwiftFluo® TR-FRET Kits Pioneers a New Era in High-Throughout Kinase Inhibitor Screening

SPT Labtech Logo

SPT Labtech enables automated Twist Bioscience NGS library preparation workflows on SPT's firefly platform