MRI Pioneer Peter Mansfield Dies

The Nobel laureate helped lay the groundwork for today’s ubiquitous magnetic resonance imaging machines.

Written byJef Akst
| 2 min read

Register for free to listen to this article
Listen with Speechify
0:00
2:00
Share

Peter Mansfield diesCOURTESY OF THE UNIVERSITY OF NOTTINGHAMPeter Mansfield, the physicist formerly of the University of Nottingham whose research supported the development of magnetic resonance imaging (MRI), died last week (February 8). He was 83.

As a 15-year-old dropout, Mansfield was an unlikely Nobel laureate (and knight). He worked at England’s Rocket Propulsion Department while taking evening classes to get into university, and eventually attended Queen Mary College (now Queen Mary University London), where he learned about nuclear magnetic resonance (NMR), the physical phenomenon in which nuclei exposed to a magnetic field absorb and re-emit electromagnetic radiation. Used primarily for chemical analysis at the time, Mansfield “astounded the NMR research community by demonstrating that an NMR signal thought to be lost could be recovered and used,” Peter Morris, head of Sir Peter Mansfield Imaging Centre at the University of Nottingham, wrote in The Conversation.

In 1964, Mansfield started as a lecturer at Nottingham, where he set to work improving NMR-based ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Related Topics

Meet the Author

  • Jef (an unusual nickname for Jennifer) got her master’s degree from Indiana University in April 2009 studying the mating behavior of seahorses. After four years of diving off the Gulf Coast of Tampa and performing behavioral experiments at the Tennessee Aquarium in Chattanooga, she left research to pursue a career in science writing. As The Scientist's managing editor, Jef edited features and oversaw the production of the TS Digest and quarterly print magazine. In 2022, her feature on uterus transplantation earned first place in the trade category of the Awards for Excellence in Health Care Journalism. She is a member of the National Association of Science Writers.

    View Full Profile
Share
Illustration of a developing fetus surrounded by a clear fluid with a subtle yellow tinge, representing amniotic fluid.
January 2026, Issue 1

What Is the Amniotic Fluid Composed of?

The liquid world of fetal development provides a rich source of nutrition and protection tailored to meet the needs of the growing fetus.

View this Issue
Skip the Wait for Protein Stability Data with Aunty

Skip the Wait for Protein Stability Data with Aunty

Unchained Labs
Graphic of three DNA helices in various colors

An Automated DNA-to-Data Framework for Production-Scale Sequencing

illumina
Exploring Cellular Organization with Spatial Proteomics

Exploring Cellular Organization with Spatial Proteomics

Abstract illustration of spheres with multiple layers, representing endoderm, ectoderm, and mesoderm derived organoids

Organoid Origins and How to Grow Them

Thermo Fisher Logo

Products

Brandtech Logo

BRANDTECH Scientific Introduces the Transferpette® pro Micropipette: A New Twist on Comfort and Control

Biotium Logo

Biotium Launches GlycoLiner™ Cell Surface Glycoprotein Labeling Kits for Rapid and Selective Cell Surface Imaging

Colorful abstract spiral dot pattern on a black background

Thermo Scientific X and S Series General Purpose Centrifuges

Thermo Fisher Logo
Abstract background with red and blue laser lights

VANTAstar Flexible microplate reader with simplified workflows

BMG LABTECH