Mutations in One Gene Linked to Two Separate Birth Defects

The same network of transcription factors may be responsible for both cleft palate and neural tube defects, according to a new study connecting mouse and human data.

Written byEmma Yasinski
| 4 min read

Register for free to listen to this article
Listen with Speechify
0:00
4:00
Share

ABOVE: The mouse on the left overexpresses the IRF6 gene and shares malformations with the mouse on the right, which has the gene Tfap2aknocked out. The mouse in the middle is wildtype. “The defects are so distinctive and yet so similar,” says Brian Schutte of Michigan State University, in an email. “As a scientist, it was the juxtaposition of these two images that inspired the WHOLE story.”
YOUSSEF KOUSA

Neural tube defects such as spina bifida, where a part of the spinal cord fails to close, may be caused by the same genes that lead to cleft lip and palate, according to a report last week (January 25) in Human Molecular Genetics. Scientists had previously thought the biological events surrounding neural tube and facial development were unrelated, but these new results, from both mouse models and human samples, link them in a way that may have to do with the timing ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Related Topics

Meet the Author

  • emma yasinski

    Emma is a Florida-based freelance journalist and regular contributor for The Scientist. A graduate of Boston University’s Science and Medical Journalism Master’s Degree program, Emma has been covering microbiology, molecular biology, neuroscience, health, and anything else that makes her wonder since 2016. She studied neuroscience in college, but even before causing a few mishaps and explosions in the chemistry lab, she knew she preferred a career in scientific reporting to one in scientific research.

    View Full Profile
Share
February 2026

A Stubborn Gene, a Failed Experiment, and a New Path

When experiments refuse to cooperate, you try again and again. For Rafael Najmanovich, the setbacks ultimately pushed him in a new direction.

View this Issue
Human-Relevant In Vitro Models Enable Predictive Drug Discovery

Advancing Drug Discovery with Complex Human In Vitro Models

Stemcell Technologies
Redefining Immunology Through Advanced Technologies

Redefining Immunology Through Advanced Technologies

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Beckman Coulter Logo
Conceptual multicolored vector image of cancer research, depicting various biomedical approaches to cancer therapy

Maximizing Cancer Research Model Systems

bioxcell

Products

Sino Biological Logo

Sino Biological Pioneers Life Sciences Innovation with High-Quality Bioreagents on Inside Business Today with Bill and Guiliana Rancic

Sino Biological Logo

Sino Biological Expands Research Reagent Portfolio to Support Global Nipah Virus Vaccine and Diagnostic Development

Beckman Coulter

Beckman Coulter Life Sciences Partners with Automata to Accelerate AI-Ready Laboratory Automation

Refeyn logo

Refeyn named in the Sunday Times 100 Tech list of the UK’s fastest-growing technology companies