Name That Metabolite!

A guided tour through the metabolome

Written byJeffrey M. Perkel
| 8 min read

Register for free to listen to this article
Listen with Speechify
0:00
8:00
Share

© NODEROG/ISTOCKPHOTO.COMThe suffix ‘-omics’ is synonymous with Big Data. It’s simply a given that when one researcher publishes an omics data set, be it genomic, transcriptomic, or proteomic, other researchers will be able to take a crack at it, too.

Metabolomics data are no different. Researchers regularly report on dysregulated metabolites in disease and development. In one 2012 study, Scripps Research Institute metabolomics expert Gary Siuzdak, with his then-postdoc Gary Patti, used mass spectrometry to identify dysregulated metabolites in a rat model of neuropathic pain. Of the tens of thousands of spectral peaks they examined, 733 were “significantly dysregulated” compared to control animals. The researchers eventually homed in on sphingomyelin-ceramide metabolism, one of the pathways these peaks represented (Nat Chem Biol, 8:232-34, 2012).

But what about the compounds they didn’t pursue? Other pain researchers might want to see what other compounds were dysregulated in Patti’s and Siuzdak’s data sets. Or they might be interested in knowing whether their particular metabolite of interest also happens to ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to digital editions of The Scientist, as well as TS Digest, feature stories, more than 35 years of archives, and much more!
Already a member? Login Here
February 2026

A Stubborn Gene, a Failed Experiment, and a New Path

When experiments refuse to cooperate, you try again and again. For Rafael Najmanovich, the setbacks ultimately pushed him in a new direction.

View this Issue
Human-Relevant In Vitro Models Enable Predictive Drug Discovery

Advancing Drug Discovery with Complex Human In Vitro Models

Stemcell Technologies
Redefining Immunology Through Advanced Technologies

Redefining Immunology Through Advanced Technologies

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Beckman Coulter Logo
Conceptual multicolored vector image of cancer research, depicting various biomedical approaches to cancer therapy

Maximizing Cancer Research Model Systems

bioxcell

Products

Sino Biological Logo

Sino Biological Pioneers Life Sciences Innovation with High-Quality Bioreagents on Inside Business Today with Bill and Guiliana Rancic

Sino Biological Logo

Sino Biological Expands Research Reagent Portfolio to Support Global Nipah Virus Vaccine and Diagnostic Development

Beckman Coulter

Beckman Coulter Life Sciences Partners with Automata to Accelerate AI-Ready Laboratory Automation

Refeyn logo

Refeyn named in the Sunday Times 100 Tech list of the UK’s fastest-growing technology companies