Name That Metabolite!

A guided tour through the metabolome

Written byJeffrey M. Perkel
| 8 min read

Register for free to listen to this article
Listen with Speechify
0:00
8:00
Share

© NODEROG/ISTOCKPHOTO.COMThe suffix ‘-omics’ is synonymous with Big Data. It’s simply a given that when one researcher publishes an omics data set, be it genomic, transcriptomic, or proteomic, other researchers will be able to take a crack at it, too.

Metabolomics data are no different. Researchers regularly report on dysregulated metabolites in disease and development. In one 2012 study, Scripps Research Institute metabolomics expert Gary Siuzdak, with his then-postdoc Gary Patti, used mass spectrometry to identify dysregulated metabolites in a rat model of neuropathic pain. Of the tens of thousands of spectral peaks they examined, 733 were “significantly dysregulated” compared to control animals. The researchers eventually homed in on sphingomyelin-ceramide metabolism, one of the pathways these peaks represented (Nat Chem Biol, 8:232-34, 2012).

But what about the compounds they didn’t pursue? Other pain researchers might want to see what other compounds were dysregulated in Patti’s and Siuzdak’s data sets. Or they might be interested in knowing whether their particular metabolite of interest also happens to ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to digital editions of The Scientist, as well as TS Digest, feature stories, more than 35 years of archives, and much more!
Already a member? Login Here
Illustration of a developing fetus surrounded by a clear fluid with a subtle yellow tinge, representing amniotic fluid.
January 2026, Issue 1

What Is the Amniotic Fluid Composed of?

The liquid world of fetal development provides a rich source of nutrition and protection tailored to meet the needs of the growing fetus.

View this Issue
Skip the Wait for Protein Stability Data with Aunty

Skip the Wait for Protein Stability Data with Aunty

Unchained Labs
Graphic of three DNA helices in various colors

An Automated DNA-to-Data Framework for Production-Scale Sequencing

illumina
Exploring Cellular Organization with Spatial Proteomics

Exploring Cellular Organization with Spatial Proteomics

Abstract illustration of spheres with multiple layers, representing endoderm, ectoderm, and mesoderm derived organoids

Organoid Origins and How to Grow Them

Thermo Fisher Logo

Products

Brandtech Logo

BRANDTECH Scientific Introduces the Transferpette® pro Micropipette: A New Twist on Comfort and Control

Biotium Logo

Biotium Launches GlycoLiner™ Cell Surface Glycoprotein Labeling Kits for Rapid and Selective Cell Surface Imaging

Colorful abstract spiral dot pattern on a black background

Thermo Scientific X and S Series General Purpose Centrifuges

Thermo Fisher Logo
Abstract background with red and blue laser lights

VANTAstar Flexible microplate reader with simplified workflows

BMG LABTECH