Nanobombs Terminate Foodborne Microbes

Researchers engineer water nanostructures to wipe out pathogens that can spoil food and pose health risks.

Written byNsikan Akpan
| 3 min read

Register for free to listen to this article
Listen with Speechify
0:00
3:00
Share

Engineered water nanostructures (EWNS) schematicG. PYRGIOTAKIS ET AL.Peppering charged water nanoparticles onto fruits and vegetables can eliminate potentially harmful foodborne microbes, researchers from Harvard and their colleagues reported last month (February 19) in Environmental Science & Technology. The new method offers an alternative to chlorine-based sprays, which can tarnish foods and are banned for organic produce.

“Using nanoscale water droplets to inactivate pathogenic bacteria is an innovative approach, and these early results show its effectiveness and great potential for improving the microbial safety of food supply as well as the sanitation of food processing surfaces,” Hongda Chen, acting deputy director at the US Department of Agriculture’s National Institute of Food and Agriculture, wrote in an e-mail.

Following a harvest, farmers have a handful of options to sterilize produce. The popular choices are chemical spritzes laced with chlorine- or quaternary ammonium compounds, which can eliminate bacteria in seconds. These sprays, however, can leave behind residues that ruin the food’s taste or cause skin irritation for handlers. Some food suppliers opt instead for ultraviolet (UV) irradiation, but that can retard ripening and alter ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Related Topics

Meet the Author

Share
Image of a man in a laboratory looking frustrated with his failed experiment.
February 2026

A Stubborn Gene, a Failed Experiment, and a New Path

When experiments refuse to cooperate, you try again and again. For Rafael Najmanovich, the setbacks ultimately pushed him in a new direction.

View this Issue
Human-Relevant In Vitro Models Enable Predictive Drug Discovery

Advancing Drug Discovery with Complex Human In Vitro Models

Stemcell Technologies
Redefining Immunology Through Advanced Technologies

Redefining Immunology Through Advanced Technologies

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Beckman Coulter logo
Conceptual multicolored vector image of cancer research, depicting various biomedical approaches to cancer therapy

Maximizing Cancer Research Model Systems

bioxcell

Products

Sino Biological Logo

Sino Biological Pioneers Life Sciences Innovation with High-Quality Bioreagents on Inside Business Today with Bill and Guiliana Rancic

Sino Biological Logo

Sino Biological Expands Research Reagent Portfolio to Support Global Nipah Virus Vaccine and Diagnostic Development

Beckman Coulter

Beckman Coulter Life Sciences Partners with Automata to Accelerate AI-Ready Laboratory Automation

Refeyn logo

Refeyn named in the Sunday Times 100 Tech list of the UK’s fastest-growing technology companies