Nanoscopy Wins Nobel

Eric Betzig, Stefan Hell, and William Moerner have won the 2014 Nobel Prize in Chemistry "for the development of super-resolved fluorescence microscopy."

Written byTracy Vence
| 2 min read

Register for free to listen to this article
Listen with Speechify
0:00
2:00
Share

Eric Betzig (left), Stefan Hell (middle), and William Moerner take home this year's Nobel Prize in Chemistry for their work on super-resolved fluorescence microscopy.ILL. N. ELMEHED. © NOBEL MEDIA 2014; WIKIMEDIA COMMONS; WIKIMEDIA COMMONS, K. LOWDER Eric Betzig, Stefan Hell, and William Moerner have won the 2014 Nobel Prize in Chemistry “for the development of super-resolved fluorescence microscopy.”

Betzig, of the Howard Hughes Medical Institute’s Janelia Farm Research Campus in Ashburn, Virginia; Hell, of the Max Planck Institute for Biophysical Chemistry and the German Cancer Research Center; and Stanford University’s Moerner will share this year’s prize equally. The three are being honored for bringing “optical microscopy into the nanodimension,” enabling scientists to “study living cells in the tiniest molecular detail,” the Nobel Foundation said in its press release announcing the award.

In 2000, Hell developed a technique called stimulated emission depletion (STED) microscopy, which uses laser beams to home in on fluorescently glowing molecules, scanning a sample nanometer by nanometer to produce a high-resolution image. For this and other achievements, Hell shared a 2014 Kavli Award.

Working separately, Betzig and Moerner paved the ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Related Topics

Meet the Author

Share
Illustration of a developing fetus surrounded by a clear fluid with a subtle yellow tinge, representing amniotic fluid.
January 2026, Issue 1

What Is the Amniotic Fluid Composed of?

The liquid world of fetal development provides a rich source of nutrition and protection tailored to meet the needs of the growing fetus.

View this Issue
Skip the Wait for Protein Stability Data with Aunty

Skip the Wait for Protein Stability Data with Aunty

Unchained Labs
Graphic of three DNA helices in various colors

An Automated DNA-to-Data Framework for Production-Scale Sequencing

illumina
Exploring Cellular Organization with Spatial Proteomics

Exploring Cellular Organization with Spatial Proteomics

Abstract illustration of spheres with multiple layers, representing endoderm, ectoderm, and mesoderm derived organoids

Organoid Origins and How to Grow Them

Thermo Fisher Logo

Products

nuclera logo

Nuclera eProtein Discovery System installed at leading Universities in Taiwan

Brandtech Logo

BRANDTECH Scientific Introduces the Transferpette® pro Micropipette: A New Twist on Comfort and Control

Biotium Logo

Biotium Launches GlycoLiner™ Cell Surface Glycoprotein Labeling Kits for Rapid and Selective Cell Surface Imaging

Colorful abstract spiral dot pattern on a black background

Thermo Scientific X and S Series General Purpose Centrifuges

Thermo Fisher Logo