Narrow-Spectrum Antibiotic Could Spare the Microbiome

A drug that singles out Staphylococcus aureus leaves gut-dwelling microbiota largely intact, a mouse study shows.

Written byAmanda B. Keener
| 3 min read

Register for free to listen to this article
Listen with Speechify
0:00
3:00
Share

Staphylococcus aureus WIKIMEDIA, NATHAN READINGIt may be possible to treat a type of bacterial infection with an antibiotic without disturbing the normal microbiota, according to a study published today (May 9) in Antimicrobial Agents and Chemotherapy. Researchers at St. Jude Children’s Research Hospital in Memphis, Tennessee, have found that when administered orally at high does, a drug that targets Staphylococcus aureus called Debio1452 (formerly AFN-1252) has little impact on intestinal bacterial communities in mice.

“It’s a really exciting new way to target pathogens,” said Kristie Keeney, a microbiologist at the University of British Columbia, who was not involved in the work. Keeney said Debio1452 falls into a much-needed class of drugs that narrowly target gram-positive bacteria like multidrug-resistant S. aureus.

Historically, antibiotics have been designed to kill off many different species of bacteria, giving clinicians an efficient and inexpensive way to treat a range of infections. But these broad-spectrum drugs can wreak havoc on a patient’s gut microbiome. In the case of oral antibiotics, “the bacteria in the intestine get a huge dose,” said study coauthor Charles Rock, an infectious disease specialist at St. Jude.

Disrupting gut microbiota can lead to complications such as an overgrowth of resident species ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Related Topics

Meet the Author

Share
February 2026

A Stubborn Gene, a Failed Experiment, and a New Path

When experiments refuse to cooperate, you try again and again. For Rafael Najmanovich, the setbacks ultimately pushed him in a new direction.

View this Issue
Human-Relevant In Vitro Models Enable Predictive Drug Discovery

Advancing Drug Discovery with Complex Human In Vitro Models

Stemcell Technologies
Redefining Immunology Through Advanced Technologies

Redefining Immunology Through Advanced Technologies

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Beckman Coulter Logo
Conceptual multicolored vector image of cancer research, depicting various biomedical approaches to cancer therapy

Maximizing Cancer Research Model Systems

bioxcell

Products

Sino Biological Logo

Sino Biological Pioneers Life Sciences Innovation with High-Quality Bioreagents on Inside Business Today with Bill and Guiliana Rancic

Sino Biological Logo

Sino Biological Expands Research Reagent Portfolio to Support Global Nipah Virus Vaccine and Diagnostic Development

Beckman Coulter

Beckman Coulter Life Sciences Partners with Automata to Accelerate AI-Ready Laboratory Automation

Refeyn logo

Refeyn named in the Sunday Times 100 Tech list of the UK’s fastest-growing technology companies