Narrow-Spectrum Antibiotic Could Spare the Microbiome

A drug that singles out Staphylococcus aureus leaves gut-dwelling microbiota largely intact, a mouse study shows.

| 3 min read

Register for free to listen to this article
Listen with Speechify
0:00
3:00
Share

Staphylococcus aureus WIKIMEDIA, NATHAN READINGIt may be possible to treat a type of bacterial infection with an antibiotic without disturbing the normal microbiota, according to a study published today (May 9) in Antimicrobial Agents and Chemotherapy. Researchers at St. Jude Children’s Research Hospital in Memphis, Tennessee, have found that when administered orally at high does, a drug that targets Staphylococcus aureus called Debio1452 (formerly AFN-1252) has little impact on intestinal bacterial communities in mice.

“It’s a really exciting new way to target pathogens,” said Kristie Keeney, a microbiologist at the University of British Columbia, who was not involved in the work. Keeney said Debio1452 falls into a much-needed class of drugs that narrowly target gram-positive bacteria like multidrug-resistant S. aureus.

Historically, antibiotics have been designed to kill off many different species of bacteria, giving clinicians an efficient and inexpensive way to treat a range of infections. But these broad-spectrum drugs can wreak havoc on a patient’s gut microbiome. In the case of oral antibiotics, “the bacteria in the intestine get a huge dose,” said study coauthor Charles Rock, an infectious disease specialist at St. Jude.

Disrupting gut microbiota can lead to complications such as an overgrowth of resident species ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Keywords

Meet the Author

  • Amanda B. Keener

    This person does not yet have a bio.
Share
A greyscale image of cells dividing.
March 2025, Issue 1

How Do Embryos Know How Fast to Develop

In mammals, intracellular clocks begin to tick within days of fertilization.

View this Issue
Discover the history, mechanics, and potential of PCR.

Become a PCR Pro

Integra Logo
3D rendered cross section of influenza viruses, showing surface proteins on the outside and single stranded RNA inside the virus

Genetic Insights Break Infectious Pathogen Barriers

Thermo Fisher Logo
A photo of sample storage boxes in an ultra-low temperature freezer.

Navigating Cold Storage Solutions

PHCbi logo 
The Immunology of the Brain

The Immunology of the Brain

Products

Sapio Sciences

Sapio Sciences Makes AI-Native Drug Discovery Seamless with NVIDIA BioNeMo

DeNovix Logo

New DeNovix Helium Nano Volume Spectrophotometer

Olink Logo

Olink® Reveal: Accessible NGS-based proteomics for every lab

Olink logo
Zymo Logo

Zymo Research Launches the Quick-16S™ Full-Length Library Prep Kit