Neanderthal Genes Likely Helped Homo sapiens Resist Illness

Modern humans retain DNA sequences from Neanderthals related to fighting off RNA-based viruses.

| 2 min read
illustration of virus particles

Register for free to listen to this article
Listen with Speechify
0:00
2:00
Share

ABOVE: © ISTOCK, ROST-9D

When Homo sapiens crossed paths with their Neanderthal cousins tens of thousands of years ago in Europe, they also encountered dangerous new pathogens—and, though interbreeding, the genes to fight those infections, a new study suggests. As the researchers report today (October 4) in Cell, genes for virus-recognizing proteins are relatively common among the tiny percentage of modern humans’ DNA that originated in Neanderthals.

The paper’s authors, Dmitri Petrov of Stanford University and his former postdoc, David Enard of the University of Arizona, note that the H. sapiens who left Africa for Europe tens of thousands of years ago would likely have encountered pathogens that Neanderthals had long been exposed to. They reasoned that descendants of H. sapien–Neanderthal interbreeding events who carried Neanderthal genes for pathogen-fighting proteins would have been more likely to survive and pass the genes along.

“It made much more sense for modern humans ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Keywords

Meet the Author

  • Shawna Williams

    Shawna was an editor at The Scientist from 2017 through 2022. She holds a bachelor's degree in biochemistry from Colorado College and a graduate certificate and science communication from the University of California, Santa Cruz.
Share
May digest 2025 cover
May 2025, Issue 1

Study Confirms Safety of Genetically Modified T Cells

A long-term study of nearly 800 patients demonstrated a strong safety profile for T cells engineered with viral vectors.

View this Issue
iStock

TaqMan Probe & Assays: Unveil What's Possible Together

Thermo Fisher Logo
Meet Aunty and Tackle Protein Stability Questions in Research and Development

Meet Aunty and Tackle Protein Stability Questions in Research and Development

Unchained Labs
Detecting Residual Cell Line-Derived DNA with Droplet Digital PCR

Detecting Residual Cell Line-Derived DNA with Droplet Digital PCR

Bio-Rad
How technology makes PCR instruments easier to use.

Making Real-Time PCR More Straightforward

Thermo Fisher Logo

Products

fujirebio-square-logo

Fujirebio Receives Marketing Clearance for Lumipulse® G pTau 217/ β-Amyloid 1-42 Plasma Ratio In-Vitro Diagnostic Test

The Scientist Placeholder Image

Biotium Launches New Phalloidin Conjugates with Extended F-actin Staining Stability for Greater Imaging Flexibility

Leica Microsystems Logo

Latest AI software simplifies image analysis and speeds up insights for scientists

BioSkryb Genomics Logo

BioSkryb Genomics and Tecan introduce a single-cell multiomics workflow for sequencing-ready libraries in under ten hours