Neuronal Connection Between Fat and the Brain Visualized

Researchers pinpoint the neurons within white fat tissue that mediate brain-bound leptin signaling and eventual fat breakdown.

Written byAnna Azvolinsky
| 3 min read

Register for free to listen to this article
Listen with Speechify
0:00
3:00
Share

Adipocyte-targeting neurons (red) within adipocytes (green) in the mouse inguinal fat pad.ANA DOMINGOSThe hormone leptin, produced by fat cells, acts as a satiety signal to the brain, resulting in fat breakdown when levels are high. The hormone, present in proportion to the amount of fat tissue, is known to act on hypothalamic neurons in the brain to tell an animal when it’s full and to kick-start the breakdown of fat. Now, a team led by researchers at the Instituto Gulbenkian de Ciencia (IGC) in Portugal and the Rockefeller University in New York City have, for the first time, provided direct visual evidence that some sympathetic neurons from the brain indeed terminate within fat cells. The researchers also used optogenetics to stimulate these neurons within a fat pad in mice and cause the breakdown of fat. Their results were published today (September 24) in Cell.

“This is a very comprehensive study with quite a beautiful dataset,” said Stephanie Fulton, who studies the neural pathways of food-motivated behavior at the University of Montreal in Canada and was not involved in the work. “[The authors] took advantage of powerful techniques to solidify the strong suggestion that white adipose tissue is directly innervated by the central nervous system and clearly demonstrate that leptin activates this sympathetic input.”

“It’s a real tour de force that combines really modern optogenetic and tissue clearing approaches that are being developed to understand the central nervous system [CNS] and are here applied to understand the neural action outside the CNS and in the body,” said Paul Kenny, director of the Experimental Therapeutics Institute at Mount Sinai Hospital in ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Related Topics

Meet the Author

  • head shot of blond woman wearing glasses

    Anna Azvolinsky received a PhD in molecular biology in November 2008 from Princeton University. Her graduate research focused on a genome-wide analyses of genomic integrity and DNA replication. She did a one-year post-doctoral fellowship at Memorial Sloan Kettering Cancer Center in New York City and then left academia to pursue science writing. She has been a freelance science writer since 2012, based in New York City.

    View Full Profile
Share
Image of small blue creatures called Nergals. Some have hearts above their heads, which signify friendship. There is one Nergal who is sneezing and losing health, which is denoted by minus one signs floating around it.
June 2025, Issue 1

Nergal Networks: Where Friendship Meets Infection

A citizen science game explores how social choices and networks can influence how an illness moves through a population.

View this Issue
Explore synthetic DNA’s many applications in cancer research

Weaving the Fabric of Cancer Research with Synthetic DNA

Twist Bio 
Illustrated plasmids in bright fluorescent colors

Enhancing Elution of Plasmid DNA

cytiva logo
An illustration of green lentiviral particles.

Maximizing Lentivirus Recovery

cytiva logo
Explore new strategies for improving plasmid DNA manufacturing workflows.

Overcoming Obstacles in Plasmid DNA Manufacturing

cytiva logo

Products

The Scientist Placeholder Image

Waters Enhances Alliance iS HPLC System Software, Setting a New Standard for End-to-End Traceability and Data Integrity 

The Scientist Placeholder Image

Agilent Unveils the Next Generation in LC-Mass Detection: The InfinityLab Pro iQ Series

agilent-logo

Agilent Announces the Enhanced 8850 Gas Chromatograph

parse-biosciences-logo

Pioneering Cancer Plasticity Atlas will help Predict Response to Cancer Therapies