Neutralizing HIV

Engineered immunogens based on conserved patches of the virus’s envelope protein point to new strategies for vaccine design.

kerry grens
| 5 min read

Register for free to listen to this article
Listen with Speechify
0:00
5:00
Share

WIKIMEDIA, NIHBroadly neutralizing antibodies, those that could squash a wide swath of virus types, are the supreme goal of HIV vaccine development. Although some people infected with HIV develop these antibodies naturally over time, scientists have not been able to recapitulate them through vaccines developed in the lab. Now, three studies published today (June 18) advance two different strategies for inducing such broadly neutralizing antibodies.

“I think both [approaches] have merit,” said John Mascola, director of the Vaccine Research Center at the National Institute of Allergy and Infectious Diseases, which was a funder of the research. “In the long run, the two could be complementary.”

The mature strategy

HIV is not a single virus, but a collection of diverse variants. A practical vaccine, then, would elicit antibodies that recognize a common element among all of them—namely, conserved epitopes of the glycan shield surrounding the virus.

The development of immunogens resembling these glycoproteins has been years in the making. Advances in understanding the structure and binding behaviors of various glycoprotein domains of the envelope protein helped Weill Cornell Medical College’s John Moore and his colleagues to develop a stable, soluble glycoprotein ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Keywords

Meet the Author

  • kerry grens

    Kerry Grens

    Kerry served as The Scientist’s news director until 2021. Before joining The Scientist in 2013, she was a stringer for Reuters Health, the senior health and science reporter at WHYY in Philadelphia, and the health and science reporter at New Hampshire Public Radio. Kerry got her start in journalism as a AAAS Mass Media fellow at KUNC in Colorado. She has a master’s in biological sciences from Stanford University and a biology degree from Loyola University Chicago.

Share
3D illustration of a gold lipid nanoparticle with pink nucleic acid inside of it. Purple and teal spikes stick out from the lipid bilayer representing polyethylene glycol.
February 2025, Issue 1

A Nanoparticle Delivery System for Gene Therapy

A reimagined lipid vehicle for nucleic acids could overcome the limitations of current vectors.

View this Issue
Considerations for Cell-Based Assays in Immuno-Oncology Research

Considerations for Cell-Based Assays in Immuno-Oncology Research

Lonza
An illustration of animal and tree silhouettes.

From Water Bears to Grizzly Bears: Unusual Animal Models

Taconic Biosciences
Sex Differences in Neurological Research

Sex Differences in Neurological Research

bit.bio logo
New Frontiers in Vaccine Development

New Frontiers in Vaccine Development

Sino

Products

Tecan Logo

Tecan introduces Veya: bringing digital, scalable automation to labs worldwide

Inventia Life Science

Inventia Life Science Launches RASTRUM™ Allegro to Revolutionize High-Throughput 3D Cell Culture for Drug Discovery and Disease Research

An illustration of differently shaped viruses.

Detecting Novel Viruses Using a Comprehensive Enrichment Panel

Twist Bio 
Zymo Research

Zymo Research Launches Microbiome Grant to Support Innovation in Microbial Sciences