New Biological Pacemaker

In guinea pigs, the insertion of a single gene can transform ordinary heart cells into pacemaker cells that regulate cardiac rhythm.

Written byDan Cossins
| 1 min read

Register for free to listen to this article
Listen with Speechify
0:00
1:00
Share

WIKIMEDIA, HEIKENWALDER HUGOScientists have converted normal heart muscle cells into pacemaker cells that control heartbeat by inserting a single gene into the heart of a guinea pig. The findings, published this week (December 17) in Nature Biotechnology, hint at the possibility of a biological alternative to artificial pacemakers for humans with failing hearts.

A human heart is made up of around 10 billion cells, but only the 10,000 or so cells in are responsible for firing the electrical pulses that control its beat. When old age or disease result in the failure of these pacemaker cells, the downstream muscle cells that create contractions lapse into inactivity. At the moment, the typical treatment is a battery-powered pacemaker implanted into the heart.

But researchers at Cedars-Sinai Heart Institute in Los Angeles, California, have created a new kind of pacemaker. Using a viral vector, they inserted into the heart of a guinea pig a gene called Tbx18, which plays a role in coaxing embryonic cardiac cells into becoming pacemaker cells.

After a few days, the modified cells “generated electrical impulses spontaneously ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here
Illustration of a developing fetus surrounded by a clear fluid with a subtle yellow tinge, representing amniotic fluid.
January 2026

What Is the Amniotic Fluid Composed of?

The liquid world of fetal development provides a rich source of nutrition and protection tailored to meet the needs of the growing fetus.

View this Issue
Human-Relevant In Vitro Models Enable Predictive Drug Discovery

Advancing Drug Discovery with Complex Human In Vitro Models

Stemcell Technologies
Redefining Immunology Through Advanced Technologies

Redefining Immunology Through Advanced Technologies

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Beckman Coulter Logo
Conceptual multicolored vector image of cancer research, depicting various biomedical approaches to cancer therapy

Maximizing Cancer Research Model Systems

bioxcell

Products

Refeyn logo

Refeyn named in the Sunday Times 100 Tech list of the UK’s fastest-growing technology companies

Parse Logo

Parse Biosciences and Graph Therapeutics Partner to Build Large Functional Immune Perturbation Atlas

Sino Biological Logo

Sino Biological's Launch of SwiftFluo® TR-FRET Kits Pioneers a New Era in High-Throughout Kinase Inhibitor Screening

SPT Labtech Logo

SPT Labtech enables automated Twist Bioscience NGS library preparation workflows on SPT's firefly platform