New Blood, circa 1914

World War I provided testing grounds for novel blood-transfusion techniques.

| 3 min read

Register for free to listen to this article
Listen with Speechify
0:00
3:00
Share

LET IT FLOW: After researchers discovered that sodium citrate could prevent the coagulation of blood for many hours—some claimed for as long as 48 hours, though transfusions were typically performed on the same day as the blood extraction—doctors would put a small amount of the substance in a glass flask and add blood collected directly from the arm of a donor. The blood was then transfused into a patient from the flask. This image was published in a review of the technique by one of its many pioneers, Richard Lewisohn, a surgeon at Mount Sinai Hospital in New York, who helped identify the appropriate dosage of sodium citrate that would keep the blood liquid without being toxic to the recipient. THE BOSTON MEDICAL AND SURGICAL JOURNAL, 190:733-42, 1924.In a dramatic and widely publicized feat in 1908, French surgeon Alexis Carrel, working at the Rockefeller Institute for Medical Research in New York City, demonstrated the relatively new technique of direct blood transfusion. To save a baby’s life, he connected the artery of a surgeon’s arm with a vein in the leg of the surgeon’s infant daughter. The method, which he and others had been developing for the past couple of years, circumvented the problem of coagulation that had long challenged blood transfusion efforts. As soon as blood is exposed to air, it begins to coagulate; directly connecting the vessels of donor and recipient avoided contact with air altogether.

“Blood could actually flow from individual to individual and really bring people back from death itself,” says Susan Lederer, a professor of medical history and bioethics at the University of Wisconsin School of Medicine and Public Health.

But the technique required great skill, limiting its implementation to only the most accomplished surgeons, such as transfusion pioneer George Washington Crile, who was one of the first to adapt Carrel’s techniques at the St. Alexis Hospital in Cleveland. Among transfusion practitioners, there was a push to discover a compound that could prevent coagulation enough to support indirect transfusion, without causing excessive bleeding or introducing toxins to the blood.

Various compounds in solution were already used for other anticlotting purposes. Jewish butchers, for instance, used salt solutions to ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to digital editions of The Scientist, as well as TS Digest, feature stories, more than 35 years of archives, and much more!
Already a member? Login Here

Keywords

Meet the Author

  • Jef Akst

    Jef Akst was managing editor of The Scientist, where she started as an intern in 2009 after receiving a master’s degree from Indiana University in April 2009 studying the mating behavior of seahorses.

Published In

Share
Image of small blue creatures called Nergals. Some have hearts above their heads, which signify friendship. There is one Nergal who is sneezing and losing health, which is denoted by minus one signs floating around it.
June 2025, Issue 1

Nergal Networks: Where Friendship Meets Infection

A citizen science game explores how social choices and networks can influence how an illness moves through a population.

View this Issue
Unraveling Complex Biology with Advanced Multiomics Technology

Unraveling Complex Biology with Five-Dimensional Multiomics

Element Bioscience Logo
Resurrecting Plant Defense Mechanisms to Avoid Crop Pathogens

Resurrecting Plant Defense Mechanisms to Avoid Crop Pathogens

Twist Bio 
The Scientist Placeholder Image

Seeing and Sorting with Confidence

BD
The Scientist Placeholder Image

Streamlining Microbial Quality Control Testing

MicroQuant™ by ATCC logo

Products

parse-biosciences-logo

Pioneering Cancer Plasticity Atlas will help Predict Response to Cancer Therapies

waters-logo

How Alderley Analytical are Delivering eXtreme Robustness in Bioanalysis

Nuclera’s eProtein Discovery

Nuclera and Cytiva collaborate to accelerate characterization of proteins for drug development