Artificial Mouse Embryo Made in a Laboratory

The embryo, grown in a dish from several types of stem cells, went through gastrulation, a significant stage in development.

Written bySukanya Charuchandra
| 1 min read

Register for free to listen to this article
Listen with Speechify
0:00
1:00
Share

ABOVE: Synthetic embryo-like structure made of three stem cell types in yellow, pink, and green
ZERNICKA-GOETZ LAB, UNIVERSITY OF CAMBRIDGE

Researchers have used three types of stem cells to create a mouse embryo in a dish, according to research published in Nature Cell Biology yesterday (July 23). The cultured embryos transformed into a multilayered structure, which helps establish subsequent cell types and axes of the body. When the mixture of cells attained the appropriate density, they independently self-organized into a clump.

“Our artificial embryos underwent the most important event in life in the culture dish,” coauthor Magdalena Zernicka-Goetz, a professor at the University of Cambridge in the U.K., says in a statement. “They are now extremely close to real embryos.” For further growth, the artificial embryos would need to be implanted into a real or synthetic womb.

Using their lab-made embryo, the researchers can better understand how the three types of ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Related Topics

Meet the Author

Share
Illustration of a developing fetus surrounded by a clear fluid with a subtle yellow tinge, representing amniotic fluid.
January 2026, Issue 1

What Is the Amniotic Fluid Composed of?

The liquid world of fetal development provides a rich source of nutrition and protection tailored to meet the needs of the growing fetus.

View this Issue
Redefining Immunology Through Advanced Technologies

Redefining Immunology Through Advanced Technologies

Skip the Wait for Protein Stability Data with Aunty

Skip the Wait for Protein Stability Data with Aunty

Unchained Labs
Graphic of three DNA helices in various colors

An Automated DNA-to-Data Framework for Production-Scale Sequencing

illumina
Exploring Cellular Organization with Spatial Proteomics

Exploring Cellular Organization with Spatial Proteomics

Products

nuclera logo

Nuclera eProtein Discovery System installed at leading Universities in Taiwan

Brandtech Logo

BRANDTECH Scientific Introduces the Transferpette® pro Micropipette: A New Twist on Comfort and Control

Biotium Logo

Biotium Launches GlycoLiner™ Cell Surface Glycoprotein Labeling Kits for Rapid and Selective Cell Surface Imaging

Colorful abstract spiral dot pattern on a black background

Thermo Scientific X and S Series General Purpose Centrifuges

Thermo Fisher Logo