CRISPR-Based Treatment Successfully Lowers Toxic Protein Levels

A first-of-its-kind gene therapy dramatically reduced misfolded protein levels in some clinical trial participants for up to six months and reduced levels in all participants for up to a year.

Written byNatalia Mesa, PhD
| 3 min read
A CRISPR-Cas9 enzyme (orange) cutting a DNA strand (blue)
Register for free to listen to this article
Listen with Speechify
0:00
3:00
Share

Researchers successfully disabled a gene in human patients by treating them with CRISPR gene editing technology, clearing patients’ blood of a toxic protein for some patients by as much as 93 percent up to six months after the initial treatment. The researchers detailed the findings in a press release, a phase 1 clinical trial update, and data slides on Monday (February 28).

“It is quite remarkable that this first [intravenous] CRISPR-based gene-editing effort has been so successful,” gene therapy researcher Terence Flotte of the University of Massachusetts Medical School, who was not involved with the study, tells Science. “This demonstrates great potential for the power of this platform clinically.”

The 15 patients, who are enrolled in a clinical trial conducted by the pharmaceutical companies Intellia Therapeutics and Regeneron Pharmaceuticals, have an inherited gene mutation called transthyretin (TTR) amyloidosis, a progressive neurological disease that causes numbness, nerve pain, and heart failure. ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Related Topics

Meet the Author

  • A black and white headshot

    As she was completing her graduate thesis on the neuroscience of vision, Natalia found that she loved to talk to other people about how science impacts them. This passion led Natalia to take up writing and science communication, and she has contributed to outlets including Scientific American and the Broad Institute. Natalia completed her PhD in neuroscience at the University of Washington and graduated from Cornell University with a bachelor’s degree in biological sciences. She was previously an intern at The Scientist, and currently freelances from her home in Seattle. 

    View Full Profile
Share
Illustration of a developing fetus surrounded by a clear fluid with a subtle yellow tinge, representing amniotic fluid.
January 2026

What Is the Amniotic Fluid Composed of?

The liquid world of fetal development provides a rich source of nutrition and protection tailored to meet the needs of the growing fetus.

View this Issue
Redefining Immunology Through Advanced Technologies

Redefining Immunology Through Advanced Technologies

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Beckman Coulter Logo
Skip the Wait for Protein Stability Data with Aunty

Skip the Wait for Protein Stability Data with Aunty

Unchained Labs
Graphic of three DNA helices in various colors

An Automated DNA-to-Data Framework for Production-Scale Sequencing

illumina

Products

nuclera logo

Nuclera eProtein Discovery System installed at leading Universities in Taiwan

Brandtech Logo

BRANDTECH Scientific Introduces the Transferpette® pro Micropipette: A New Twist on Comfort and Control

Biotium Logo

Biotium Launches GlycoLiner™ Cell Surface Glycoprotein Labeling Kits for Rapid and Selective Cell Surface Imaging

Colorful abstract spiral dot pattern on a black background

Thermo Scientific X and S Series General Purpose Centrifuges

Thermo Fisher Logo