Pancreatic Cell Cilia Wiggle to Control Insulin Release

Tiny hairlike structures on pancreatic cells have long been considered static sensors. Now, researchers say they move and help regulate insulin secretion.

Written byShafaq Zia
| 3 min read
Squiggly green cilia on blue human pancreatic beta cells
Register for free to listen to this article
Listen with Speechify
0:00
3:00
Share

Jing Hughes, an endocrinologist at Washington University in St. Louis, was working late in the lab recently, imaging cilia in mouse pancreatic beta cells. These cilia, which are tiny hairlike organelles, were thought to be static sensors that help the pancreas manage blood glucose levels, but nonmotile cilia in general are poorly characterized in comparison with their wiggly, moving counterparts. So, Hughes’ goal was to observe and record the distribution of these “primary” cilia within the organ’s well-defined clumps of cells, called islets. Then she saw one of them move.

“I didn’t believe it at first,” says Hughes. She had stayed late working on her microscopy, she explains, so “I thought I was just tired. These things were not supposed to move.”

I thought I was just tired. These things were not supposed to move.

Intrigued, Hughes and colleagues imaged pancreatic cilia under many different conditions, observing the same motion ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Related Topics

Meet the Author

  • Shafaq Zia

    Shafaq Zia is a freelance science journalist and a graduate student in the Science Writing Program at the Massachusetts Institute of Technology. Previously, she was a reporting intern at STAT, where she covered the COVID-19 pandemic and the latest research in health technology. Read more of her work here.

    View Full Profile
Share
Illustration of a developing fetus surrounded by a clear fluid with a subtle yellow tinge, representing amniotic fluid.
January 2026

What Is the Amniotic Fluid Composed of?

The liquid world of fetal development provides a rich source of nutrition and protection tailored to meet the needs of the growing fetus.

View this Issue
Redefining Immunology Through Advanced Technologies

Redefining Immunology Through Advanced Technologies

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Beckman Coulter Logo
Skip the Wait for Protein Stability Data with Aunty

Skip the Wait for Protein Stability Data with Aunty

Unchained Labs
Graphic of three DNA helices in various colors

An Automated DNA-to-Data Framework for Production-Scale Sequencing

illumina

Products

nuclera logo

Nuclera eProtein Discovery System installed at leading Universities in Taiwan

Brandtech Logo

BRANDTECH Scientific Introduces the Transferpette® pro Micropipette: A New Twist on Comfort and Control

Biotium Logo

Biotium Launches GlycoLiner™ Cell Surface Glycoprotein Labeling Kits for Rapid and Selective Cell Surface Imaging

Colorful abstract spiral dot pattern on a black background

Thermo Scientific X and S Series General Purpose Centrifuges

Thermo Fisher Logo