Ten Years of CRISPR

This month marks ten years since CRISPR-Cas9 was repurposed as a gene editing system, so we’re looking back at what has been accomplished in a decade of CRISPR editing.

Written bySophie Fessl, PhD
| 7 min read
artistic rendering of CRISPR/Cas9
Register for free to listen to this article
Listen with Speechify
0:00
7:00
Share

Ten years ago, Emmanuelle Charpentier and Jennifer Doudna published the study that paved the way for a new kind of genome editing: the suite of technologies now known as CRISPR. Writing in Science, they adapted an RNA-mediated bacterial immune defense into a targeted DNA-altering system. “Our study . . . highlights the potential to exploit the system for RNA-programmable genome editing,” they conclude in the abstract of their paper—a potential that, in the intervening years, transformed the life sciences.

From gene drives to screens, and diagnostics to therapeutics, CRISPR nucleic acids and the Cas enzymes with which they’re frequently paired have revolutionized how scientists tinker with DNA and RNA. Indeed, in 2020, Doudna and Charpentier were awarded the Nobel Prize in Chemistry for developing a technology that allows “rewriting the code of life,” as the secretary-general of the Royal Swedish Academy of Sciences described in his announcement. However, altering the ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Related Topics

Meet the Author

  • Headshot of Sophie Fessl

    Sophie Fessl is a freelance science journalist. She has a PhD in developmental neurobiology from King’s College London and a degree in biology from the University of Oxford. After completing her PhD, she swapped her favorite neuroscience model, the fruit fly, for pen and paper.

    View Full Profile
Share
Illustration of a developing fetus surrounded by a clear fluid with a subtle yellow tinge, representing amniotic fluid.
January 2026, Issue 1

What Is the Amniotic Fluid Composed of?

The liquid world of fetal development provides a rich source of nutrition and protection tailored to meet the needs of the growing fetus.

View this Issue
Redefining Immunology Through Advanced Technologies

Redefining Immunology Through Advanced Technologies

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Beckman Coulter Logo
Skip the Wait for Protein Stability Data with Aunty

Skip the Wait for Protein Stability Data with Aunty

Unchained Labs
Graphic of three DNA helices in various colors

An Automated DNA-to-Data Framework for Production-Scale Sequencing

illumina

Products

nuclera logo

Nuclera eProtein Discovery System installed at leading Universities in Taiwan

Brandtech Logo

BRANDTECH Scientific Introduces the Transferpette® pro Micropipette: A New Twist on Comfort and Control

Biotium Logo

Biotium Launches GlycoLiner™ Cell Surface Glycoprotein Labeling Kits for Rapid and Selective Cell Surface Imaging

Colorful abstract spiral dot pattern on a black background

Thermo Scientific X and S Series General Purpose Centrifuges

Thermo Fisher Logo