Next Generation: Cancer Drug in Disguise

Researchers develop a strategy for rendering a toxic drug harmless—until it encounters a pair of enzymes that signals cancer cells are nearby.

| 3 min read

Register for free to listen to this article
Listen with Speechify
0:00
3:00
Share

Nobuhide Ueki in the labSTONY BROOK UNIVERSITYThe drug: Researchers have found a new way to modify cell-killing agents to make them selectively poison cancer cells, while avoiding healthy cells, according to a paper published today (November 5) in Nature Communications. The researchers deactivated a toxic agent, puromycin, by adding an acetylated lysine residue to it. The resulting compound, called Boc-KAc-Puro, is a prodrug—the compound is biologically inactive until it interacts with enzymes produced by the cancer cells it targets. The proposed activating enzymes include histone deacetylases (HDACs) and the protease cathepsin L (CTSL), which are abundant in cancer cells. To activate the drug, the HDACs first deacetylate the lysine residue. Only after the deacetylation can CTSL remove the lysine from the puromycin, freeing it to kill any nearby cells by interrupting protein synthesis. The paper “introduces a clever way of ensuring the anticancer drug activates only in designated tumors by targeting two distinctive enzymes overexpressed in cancer cells,” Seulki Lee, who studies molecular imaging and drug delivery at the Johns Hopkins School of Medicine's Center for Nanomedicine and Department of Radiology and was not involved in the study, wrote in an email to The Scientist.

What’s new: Numerous tumor-targeting prodrugs are in development. But Boc-KAc-Puro is novel because it uses HDACs as triggering enzymes, and unleashing its toxicity involves two steps rather than one. “If you only have HDAC it won’t activate the drug,” said coauthor Nobuhide Ueki, a cancer biologist at Stony Brook University on Long Island, New York. “You need both HDAC and cathepsin L.” The two-step triggering process makes it less likely that a noncancer cell could unleash the drug’s toxicity. “Since the prodrug activates and demonstrates toxicity only after meeting the two unique enzymes in cancer cells, the system demonstrates increased specificity and safety compared to conventional prodrugs targeting a single enzyme,” said Lee. The researchers found that Boc-KAc-Puro was able to kill a variety of ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Keywords

Meet the Author

  • Kate Yandell

    This person does not yet have a bio.
Share
TS Digest January 2025
January 2025, Issue 1

Why Do Some People Get Drunk Faster Than Others?

Genetics and tolerance shake up how alcohol affects each person, creating a unique cocktail of experiences.

View this Issue
Sex Differences in Neurological Research

Sex Differences in Neurological Research

bit.bio logo
New Frontiers in Vaccine Development

New Frontiers in Vaccine Development

Sino
New Approaches for Decoding Cancer at the Single-Cell Level

New Approaches for Decoding Cancer at the Single-Cell Level

Biotium logo
Learn How 3D Cell Cultures Advance Tissue Regeneration

Organoids as a Tool for Tissue Regeneration Research 

Acro 

Products

Artificial Inc. Logo

Artificial Inc. proof-of-concept data demonstrates platform capabilities with NVIDIA’s BioNeMo

Sapient Logo

Sapient Partners with Alamar Biosciences to Extend Targeted Proteomics Services Using NULISA™ Assays for Cytokines, Chemokines, and Inflammatory Mediators

Bio-Rad Logo

Bio-Rad Extends Range of Vericheck ddPCR Empty-Full Capsid Kits to Optimize AAV Vector Characterization

Scientist holding a blood sample tube labeled Mycoplasma test in front of many other tubes containing patient samples

Accelerating Mycoplasma Testing for Targeted Therapy Development