Next Generation: Cancer Drug in Disguise

Researchers develop a strategy for rendering a toxic drug harmless—until it encounters a pair of enzymes that signals cancer cells are nearby.

Written byKate Yandell
| 3 min read

Register for free to listen to this article
Listen with Speechify
0:00
3:00
Share

Nobuhide Ueki in the labSTONY BROOK UNIVERSITYThe drug: Researchers have found a new way to modify cell-killing agents to make them selectively poison cancer cells, while avoiding healthy cells, according to a paper published today (November 5) in Nature Communications. The researchers deactivated a toxic agent, puromycin, by adding an acetylated lysine residue to it. The resulting compound, called Boc-KAc-Puro, is a prodrug—the compound is biologically inactive until it interacts with enzymes produced by the cancer cells it targets. The proposed activating enzymes include histone deacetylases (HDACs) and the protease cathepsin L (CTSL), which are abundant in cancer cells. To activate the drug, the HDACs first deacetylate the lysine residue. Only after the deacetylation can CTSL remove the lysine from the puromycin, freeing it to kill any nearby cells by interrupting protein synthesis. The paper “introduces a clever way of ensuring the anticancer drug activates only in designated tumors by targeting two distinctive enzymes overexpressed in cancer cells,” Seulki Lee, who studies molecular imaging and drug delivery at the Johns Hopkins School of Medicine's Center for Nanomedicine and Department of Radiology and was not involved in the study, wrote in an email to The Scientist.

What’s new: Numerous tumor-targeting prodrugs are in development. But Boc-KAc-Puro is novel because it uses HDACs as triggering enzymes, and unleashing its toxicity involves two steps rather than one. “If you only have HDAC it won’t activate the drug,” said coauthor Nobuhide Ueki, a cancer biologist at Stony Brook University on Long Island, New York. “You need both HDAC and cathepsin L.” The two-step triggering process makes it less likely that a noncancer cell could unleash the drug’s toxicity. “Since the prodrug activates and demonstrates toxicity only after meeting the two unique enzymes in cancer cells, the system demonstrates increased specificity and safety compared to conventional prodrugs targeting a single enzyme,” said Lee. The researchers found that Boc-KAc-Puro was able to kill a variety of ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Related Topics

Meet the Author

Share
Illustration of a developing fetus surrounded by a clear fluid with a subtle yellow tinge, representing amniotic fluid.
January 2026, Issue 1

What Is the Amniotic Fluid Composed of?

The liquid world of fetal development provides a rich source of nutrition and protection tailored to meet the needs of the growing fetus.

View this Issue
Skip the Wait for Protein Stability Data with Aunty

Skip the Wait for Protein Stability Data with Aunty

Unchained Labs
Graphic of three DNA helices in various colors

An Automated DNA-to-Data Framework for Production-Scale Sequencing

illumina
Exploring Cellular Organization with Spatial Proteomics

Exploring Cellular Organization with Spatial Proteomics

Abstract illustration of spheres with multiple layers, representing endoderm, ectoderm, and mesoderm derived organoids

Organoid Origins and How to Grow Them

Thermo Fisher Logo

Products

Brandtech Logo

BRANDTECH Scientific Introduces the Transferpette® pro Micropipette: A New Twist on Comfort and Control

Biotium Logo

Biotium Launches GlycoLiner™ Cell Surface Glycoprotein Labeling Kits for Rapid and Selective Cell Surface Imaging

Colorful abstract spiral dot pattern on a black background

Thermo Scientific X and S Series General Purpose Centrifuges

Thermo Fisher Logo
Abstract background with red and blue laser lights

VANTAstar Flexible microplate reader with simplified workflows

BMG LABTECH