Next Generation: Dynamic, Nanoscale GFP

A new faster-switching, longer-lasting GFP allows gentler and faster high resolution microscopy on living cells.

| 3 min read

Register for free to listen to this article
Listen with Speechify
0:00
3:00
Share

Keratin fibers visualized using rsEGFP. Scale bar, 10 micrometers.Grotjohann et al., eLifeThe device: Tweaking just a few protein residues, researchers at the Max Planck Institute for Biophysical Chemistry in Germany have created a new type of enhanced GFP (EGFP) protein that enables extremely high resolution of dynamic structures in living cells—without damaging levels of laser power.

The new fluorescent probe, rsEGFP2, is based on an older version of EGFP able to switch reversibly between fluorescent and dark states, rsEGFP. The researchers, led by senior authors Stefan Hell and Stefan Jakobs at Max Planck, mutated only a few amino acids to produce an EGFP that switches more quickly than previous iterations. In a study published last December in eLife, they showed that the new fluorophore also lasts longer, resisting “photofatigue” that wears out fluorescent proteins and leaves them stuck in one state after too many rounds of excitation.

Dynamic imaging of live cells is extremely important to understand their processes, explained Joerg Bewersdorf, a biophysicist at Yale University who was not involved in the research. But many small structures, like organelles, are ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Keywords

Meet the Author

  • Sabrina Richards

    This person does not yet have a bio.
Share
3D illustration of a gold lipid nanoparticle with pink nucleic acid inside of it. Purple and teal spikes stick out from the lipid bilayer representing polyethylene glycol.
February 2025, Issue 1

A Nanoparticle Delivery System for Gene Therapy

A reimagined lipid vehicle for nucleic acids could overcome the limitations of current vectors.

View this Issue
Enhancing Therapeutic Antibody Discovery with Cross-Platform Workflows

Enhancing Therapeutic Antibody Discovery with Cross-Platform Workflows

sartorius logo
Considerations for Cell-Based Assays in Immuno-Oncology Research

Considerations for Cell-Based Assays in Immuno-Oncology Research

Lonza
An illustration of animal and tree silhouettes.

From Water Bears to Grizzly Bears: Unusual Animal Models

Taconic Biosciences
Sex Differences in Neurological Research

Sex Differences in Neurological Research

bit.bio logo

Products

Photo of a researcher overseeing large scale production processes in a laboratory.

Scaling Lentiviral Vector Manufacturing for Optimal Productivity

Thermo Fisher Logo
Collage-style urban graphic of wastewater surveillance and treatment

Putting Pathogens to the Test with Wastewater Surveillance

An illustration of an mRNA molecule in front of a multicolored background.

Generating High-Quality mRNA for In Vivo Delivery with lipid nanoparticles

Thermo Fisher Logo
Tecan Logo

Tecan introduces Veya: bringing digital, scalable automation to labs worldwide