Next Generation: Separation Two Ways

Researchers designed a microfluidics chip to separate cells using gravity and a force field.

Written bySabrina Richards
| 2 min read

Register for free to listen to this article
Listen with Speechify
0:00
2:00
Share

An artist's rendering of tumor cells flowing over an array of physical barriers. MARTIN RIETVELD/JOHNS HOPKINS UNIVERSITY

The Device: Researchers at Johns Hopkins University have developed a simple microfluidics chip to separate biological particles, like cells or proteins, by speed and location. Developed by graduate student Jorge Bernate with professor German Drazer, the strategy is a twist on chromatography, wherein separation of particles, like cells or peptides, occurs over time, with fast-moving particles being collected first and slow-moving particles being picked up later. Instead of relying on the single dimension of time, however, Bernate uses a strategy termed vector chromatography, which also uses space to separate biological entities.

The device relies a very simple and cheap force—gravity—to flow particles over an array of micron-sized bumps arranged “like rumble strips on a highway,” said David Inglis, who also researches microfluidics for biological applications ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here
February 2026

A Stubborn Gene, a Failed Experiment, and a New Path

When experiments refuse to cooperate, you try again and again. For Rafael Najmanovich, the setbacks ultimately pushed him in a new direction.

View this Issue
Human-Relevant In Vitro Models Enable Predictive Drug Discovery

Advancing Drug Discovery with Complex Human In Vitro Models

Stemcell Technologies
Redefining Immunology Through Advanced Technologies

Redefining Immunology Through Advanced Technologies

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Beckman Coulter Logo
Conceptual multicolored vector image of cancer research, depicting various biomedical approaches to cancer therapy

Maximizing Cancer Research Model Systems

bioxcell

Products

Sino Biological Logo

Sino Biological Pioneers Life Sciences Innovation with High-Quality Bioreagents on Inside Business Today with Bill and Guiliana Rancic

Sino Biological Logo

Sino Biological Expands Research Reagent Portfolio to Support Global Nipah Virus Vaccine and Diagnostic Development

Beckman Coulter

Beckman Coulter Life Sciences Partners with Automata to Accelerate AI-Ready Laboratory Automation

Refeyn logo

Refeyn named in the Sunday Times 100 Tech list of the UK’s fastest-growing technology companies