Next Generation: Separation Two Ways

Researchers designed a microfluidics chip to separate cells using gravity and a force field.

Written bySabrina Richards
| 2 min read

Register for free to listen to this article
Listen with Speechify
0:00
2:00
Share

An artist's rendering of tumor cells flowing over an array of physical barriers. MARTIN RIETVELD/JOHNS HOPKINS UNIVERSITY

The Device: Researchers at Johns Hopkins University have developed a simple microfluidics chip to separate biological particles, like cells or proteins, by speed and location. Developed by graduate student Jorge Bernate with professor German Drazer, the strategy is a twist on chromatography, wherein separation of particles, like cells or peptides, occurs over time, with fast-moving particles being collected first and slow-moving particles being picked up later. Instead of relying on the single dimension of time, however, Bernate uses a strategy termed vector chromatography, which also uses space to separate biological entities.

The device relies a very simple and cheap force—gravity—to flow particles over an array of micron-sized bumps arranged “like rumble strips on a highway,” said David Inglis, who also researches microfluidics for biological applications ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here
Illustration of a developing fetus surrounded by a clear fluid with a subtle yellow tinge, representing amniotic fluid.
January 2026, Issue 1

What Is the Amniotic Fluid Composed of?

The liquid world of fetal development provides a rich source of nutrition and protection tailored to meet the needs of the growing fetus.

View this Issue
Skip the Wait for Protein Stability Data with Aunty

Skip the Wait for Protein Stability Data with Aunty

Unchained Labs
Graphic of three DNA helices in various colors

An Automated DNA-to-Data Framework for Production-Scale Sequencing

illumina
Exploring Cellular Organization with Spatial Proteomics

Exploring Cellular Organization with Spatial Proteomics

Abstract illustration of spheres with multiple layers, representing endoderm, ectoderm, and mesoderm derived organoids

Organoid Origins and How to Grow Them

Thermo Fisher Logo

Products

Brandtech Logo

BRANDTECH Scientific Introduces the Transferpette® pro Micropipette: A New Twist on Comfort and Control

Biotium Logo

Biotium Launches GlycoLiner™ Cell Surface Glycoprotein Labeling Kits for Rapid and Selective Cell Surface Imaging

Colorful abstract spiral dot pattern on a black background

Thermo Scientific X and S Series General Purpose Centrifuges

Thermo Fisher Logo
Abstract background with red and blue laser lights

VANTAstar Flexible microplate reader with simplified workflows

BMG LABTECH