Nine Decades of Environmental Change Resurrected From Swedish Seas

Scientists bring marine plankton back to life to study past climate change.

Written byClaire Asher
| 4 min read

Register for free to listen to this article
Listen with Speechify
0:00
4:00
Share

HARD-CORE BIOLOGY: One of the sediment cores from which Nina Lundholm pulls slumbering phytoplankton to reanimate and studyMARIANNE ELLEGAARD, UNIVERSITY OF COPENHAGEN

After a decade studying microscopic marine life, biologist Nina Lundholm decided in 2011 that it was time to bring back the dead. She had first become fascinated with phytoplankton when she was a PhD student at the University of Copenhagen, and much of her research since then has focused on how their populations respond to short-term ecological changes.

Studying variation between modern species led her to wonder how these tiny organisms changed over longer stretches of time. “Because [marine phytoplankton] make up the basis of the food web, it is important to see how they respond to changes in the environment and the climate,” says Lundholm, who is now an associate professor at the Natural History Museum of Denmark.

Marine phytoplankton, which include a diverse ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to digital editions of The Scientist, as well as TS Digest, feature stories, more than 35 years of archives, and much more!
Already a member? Login Here

Related Topics

Meet the Author

Published In

July/August 2017

DNA Erector Sets

New blueprints for the double helix

Share
Illustration of a developing fetus surrounded by a clear fluid with a subtle yellow tinge, representing amniotic fluid.
January 2026, Issue 1

What Is the Amniotic Fluid Composed of?

The liquid world of fetal development provides a rich source of nutrition and protection tailored to meet the needs of the growing fetus.

View this Issue
Skip the Wait for Protein Stability Data with Aunty

Skip the Wait for Protein Stability Data with Aunty

Unchained Labs
Graphic of three DNA helices in various colors

An Automated DNA-to-Data Framework for Production-Scale Sequencing

illumina
Exploring Cellular Organization with Spatial Proteomics

Exploring Cellular Organization with Spatial Proteomics

Abstract illustration of spheres with multiple layers, representing endoderm, ectoderm, and mesoderm derived organoids

Organoid Origins and How to Grow Them

Thermo Fisher Logo

Products

Brandtech Logo

BRANDTECH Scientific Introduces the Transferpette® pro Micropipette: A New Twist on Comfort and Control

Biotium Logo

Biotium Launches GlycoLiner™ Cell Surface Glycoprotein Labeling Kits for Rapid and Selective Cell Surface Imaging

Colorful abstract spiral dot pattern on a black background

Thermo Scientific X and S Series General Purpose Centrifuges

Thermo Fisher Logo
Abstract background with red and blue laser lights

VANTAstar Flexible microplate reader with simplified workflows

BMG LABTECH