Non-coding Mutations May Drive Cancer

The majority of human melanomas contain mutations in a gene promoter, suggesting mutations in regulatory regions may spur some cancers.

Written byDan Cossins
| 3 min read

Register for free to listen to this article
Listen with Speechify
0:00
3:00
Share

Human metastatic melanoma cellsWIKIMEDIA, NATIONAL CANCER INSTITUTEMutations in the regulatory, or non-coding, regions of the telomerase reverse transcriptase (TERT) gene—a cancer-associated gene that encodes a component of telomerase, an enzyme known to help protect the ends of chromosomes and support cell longevity—may be at the root of most melanomas, according to two papers published today (January 24) in Science.

In both studies, researchers identified mutations that created new binding sites in the TERT promoter for particular transcription factors and resulted in increased transcriptional activity at the TERT promoter, which may in turn lead to increased expression of the gene and the endless cell division characteristic of cancer cells. The findings suggest that mutations in regulatory parts of the genome, in addition to those in protein-coding sequences, may be a key mechanism causing the growth of certain types of cancer.

“I am excited by the finding that regulatory mutations can apparently act as drivers of carcinogenesis,” Elaine Mardis, a cancer geneticist and co-director of the Genome Institute at Washington University, Missouri, who was not involved in the research, said in an email. “This is great ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here
Illustration of a developing fetus surrounded by a clear fluid with a subtle yellow tinge, representing amniotic fluid.
January 2026

What Is the Amniotic Fluid Composed of?

The liquid world of fetal development provides a rich source of nutrition and protection tailored to meet the needs of the growing fetus.

View this Issue
Human-Relevant In Vitro Models Enable Predictive Drug Discovery

Advancing Drug Discovery with Complex Human In Vitro Models

Stemcell Technologies
Redefining Immunology Through Advanced Technologies

Redefining Immunology Through Advanced Technologies

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Beckman Coulter Logo
Conceptual multicolored vector image of cancer research, depicting various biomedical approaches to cancer therapy

Maximizing Cancer Research Model Systems

bioxcell

Products

Sino Biological Logo

Sino Biological Pioneers Life Sciences Innovation with High-Quality Bioreagents on Inside Business Today with Bill and Guiliana Rancic

Sino Biological Logo

Sino Biological Expands Research Reagent Portfolio to Support Global Nipah Virus Vaccine and Diagnostic Development

Beckman Coulter

Beckman Coulter Life Sciences Partners with Automata to Accelerate AI-Ready Laboratory Automation

Refeyn logo

Refeyn named in the Sunday Times 100 Tech list of the UK’s fastest-growing technology companies