Non-coding Mutations May Drive Cancer

The majority of human melanomas contain mutations in a gene promoter, suggesting mutations in regulatory regions may spur some cancers.

| 3 min read

Register for free to listen to this article
Listen with Speechify
0:00
3:00
Share

Human metastatic melanoma cellsWIKIMEDIA, NATIONAL CANCER INSTITUTEMutations in the regulatory, or non-coding, regions of the telomerase reverse transcriptase (TERT) gene—a cancer-associated gene that encodes a component of telomerase, an enzyme known to help protect the ends of chromosomes and support cell longevity—may be at the root of most melanomas, according to two papers published today (January 24) in Science.

In both studies, researchers identified mutations that created new binding sites in the TERT promoter for particular transcription factors and resulted in increased transcriptional activity at the TERT promoter, which may in turn lead to increased expression of the gene and the endless cell division characteristic of cancer cells. The findings suggest that mutations in regulatory parts of the genome, in addition to those in protein-coding sequences, may be a key mechanism causing the growth of certain types of cancer.

“I am excited by the finding that regulatory mutations can apparently act as drivers of carcinogenesis,” Elaine Mardis, a cancer geneticist and co-director of the Genome Institute at Washington University, Missouri, who was not involved in the research, said in an email. “This is great ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Keywords

Meet the Author

  • Dan Cossins

    This person does not yet have a bio.
Share
May digest 2025 cover
May 2025, Issue 1

Study Confirms Safety of Genetically Modified T Cells

A long-term study of nearly 800 patients demonstrated a strong safety profile for T cells engineered with viral vectors.

View this Issue
Detecting Residual Cell Line-Derived DNA with Droplet Digital PCR

Detecting Residual Cell Line-Derived DNA with Droplet Digital PCR

Bio-Rad
How technology makes PCR instruments easier to use.

Making Real-Time PCR More Straightforward

Thermo Fisher Logo
Characterizing Immune Memory to COVID-19 Vaccination

Characterizing Immune Memory to COVID-19 Vaccination

10X Genomics
Optimize PCR assays with true linear temperature gradients

Applied Biosystems™ VeriFlex™ System: True Temperature Control for PCR Protocols

Thermo Fisher Logo

Products

The Scientist Placeholder Image

Biotium Launches New Phalloidin Conjugates with Extended F-actin Staining Stability for Greater Imaging Flexibility

Leica Microsystems Logo

Latest AI software simplifies image analysis and speeds up insights for scientists

BioSkryb Genomics Logo

BioSkryb Genomics and Tecan introduce a single-cell multiomics workflow for sequencing-ready libraries in under ten hours

iStock

Agilent BioTek Cytation C10 Confocal Imaging Reader

agilent technologies logo