Noninherited Genetic Mutations Link to Schizophrenia

By studying the genomes of more than 24,000 individuals, researchers discovered rare genetic mutations that may shed light on mechanisms underlying schizophrenia.

alejandra manjarrez
| 2 min read
Glass mosaic with the image of two people. The bodies are arbitrarily crossed by lines that divide them into amorphous fractions, some of them colored.
Register for free to listen to this article
Listen with Speechify
0:00
2:00
Share

Although they are rare, noninherited mutations can have a large impact. According to a new study published in Cell Genomics, somatic mutations occurring during early development of the human embryo may contribute to some cases of schizophrenia.1 Specifically, the authors found recurrent mutations disrupting two genes, one of which previously linked to the disorder.

See “Mosaic Mutations May Not Be Rare

The mutations discovered by the research team are “rare variants that affect a few people but may have a very large effect size,” said Thomas Burne, a neuroscientist at the Queensland Brain Institute who did not participate in this study. Burne noted that this is not going to explain how people develop schizophrenia in general, but it might be important for precision medicine and for prompting future discoveries.

Somatic mutations contribute to other psychiatric disorders such as autism and focal epilepsy.2,3 “It seemed like it was worth exploring whether something similar might be going on in schizophrenia,” said Christopher Walsh, a neurogeneticist at the Boston Children’s Hospital and coauthor of the paper. To test this hypothesis, Walsh and his colleagues analyzed the genomes of blood samples from 12,834 patients diagnosed with schizophrenia and compared them with samples from 11,648 control individuals.

See “Thousands of Mutations Accumulate in the Human Brain Over a Lifetime

Using various algorithms designed to identify somatic copy number variants, the team discovered nonhereditary mutations that were significantly more common in patients with schizophrenia than in the control group. Recurrent mutations in two genes stood out. A small group of six patients had somatic deletions in neurexin 1 (NRXN1), a gene previously associated with schizophrenia,4 and a separate group of six patients had mutations in ATP-binding cassette subfamily B member 11 (ABCB11), a gene involved in liver function and not previously associated with the psychiatric disorder.

When they assessed the expression of ABCB11 in healthy adult postmortem midbrain tissue, Walsh and his colleagues saw strong expression in a subset of neurons previously implicated in schizophrenia.

Although these mutations may explain a small fraction of cases of schizophrenia, Walsh noted that the findings “can be thought of as analogous to studies of rare diseases in general.” First, they “don't seem so rare if you know somebody who has it, and rare mutations of large effect size offer, in some ways, the best window into defining mechanisms” to better understand a disease such as schizophrenia.

Keywords

Meet the Author

  • alejandra manjarrez

    Alejandra Manjarrez, PhD

    Alejandra Manjarrez is a freelance science journalist who contributes to The Scientist. She has a PhD in systems biology from ETH Zurich and a master’s in molecular biology from Utrecht University.
Share
You might also be interested in...
Loading Next Article...
You might also be interested in...
Loading Next Article...
Image of small blue creatures called Nergals. Some have hearts above their heads, which signify friendship. There is one Nergal who is sneezing and losing health, which is denoted by minus one signs floating around it.
June 2025, Issue 1

Nergal Networks: Where Friendship Meets Infection

A citizen science game explores how social choices and networks can influence how an illness moves through a population.

View this Issue
Unraveling Complex Biology with Advanced Multiomics Technology

Unraveling Complex Biology with Five-Dimensional Multiomics

Element Bioscience Logo
Resurrecting Plant Defense Mechanisms to Avoid Crop Pathogens

Resurrecting Plant Defense Mechanisms to Avoid Crop Pathogens

Twist Bio 
The Scientist Placeholder Image

Seeing and Sorting with Confidence

BD
The Scientist Placeholder Image

Streamlining Microbial Quality Control Testing

MicroQuant™ by ATCC logo

Products

The Scientist Placeholder Image

Agilent Unveils the Next Generation in LC-Mass Detection: The InfinityLab Pro iQ Series

parse-biosciences-logo

Pioneering Cancer Plasticity Atlas will help Predict Response to Cancer Therapies

waters-logo

How Alderley Analytical are Delivering eXtreme Robustness in Bioanalysis