Obesity via Microbe Transplants

Germ-free mice gain weight when transplanted with gut microbes from obese humans, in a diet-dependent manner.

Written byEd Yong
| 3 min read

Register for free to listen to this article
Listen with Speechify
0:00
3:00
Share

Escherichia coliWIKIPEDIAPhysical traits like obesity and leanness can be “transmitted” to mice, by inoculating the rodents with human gut microbes. A team of scientists led by Jeffrey Gordon from the Washington University School of Medicine in St. Louis found that germ-free mice put on weight when they were transplanted with gut microbes from an obese person, but not those from a lean person.

The team also showed that a “lean” microbial community could infiltrate and displace an “obese” one, preventing mice from gaining weight so long as they were on a healthy diet. The results were published today (September 5) in Science.

Gordon emphasized that there are many causes of obesity beyond microbes. Still, he said that studies like these “provide a proof-of-principle for ameliorating diseases.” By understanding how microbes and food interact to influence human health, researchers may be able to design effective probiotics that can prevent obesity by manipulating the microbiome.

The human gut is home to tens of trillions of microbes, which play crucial roles in breaking down food and influencing health. Gordon’s group and others have now shown that obese and lean people differ ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here
Add The Scientist as a preferred source on Google

Add The Scientist as a preferred Google source to see more of our trusted coverage.

Related Topics

Meet the Author

Share
Image of a man in a laboratory looking frustrated with his failed experiment.
February 2026

A Stubborn Gene, a Failed Experiment, and a New Path

When experiments refuse to cooperate, you try again and again. For Rafael Najmanovich, the setbacks ultimately pushed him in a new direction.

View this Issue
Human-Relevant In Vitro Models Enable Predictive Drug Discovery

Advancing Drug Discovery with Complex Human In Vitro Models

Stemcell Technologies
Redefining Immunology Through Advanced Technologies

Redefining Immunology Through Advanced Technologies

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Beckman Coulter logo
Conceptual multicolored vector image of cancer research, depicting various biomedical approaches to cancer therapy

Maximizing Cancer Research Model Systems

bioxcell

Products

Sino Biological Logo

Sino Biological Pioneers Life Sciences Innovation with High-Quality Bioreagents on Inside Business Today with Bill and Guiliana Rancic

Sino Biological Logo

Sino Biological Expands Research Reagent Portfolio to Support Global Nipah Virus Vaccine and Diagnostic Development

Beckman Coulter

Beckman Coulter Life Sciences Partners with Automata to Accelerate AI-Ready Laboratory Automation

Graphic of amino acid chains folded into proteins

Expi293™ PRO Expression System: Higher Yields Across a Wider Variety of Proteins

Thermo Fisher Logo