Observing Nascent Neurons in Action

Scientists image the activity of adult-born neurons in the brains of waking mice, and reveal roles for the cells in learning and memory.

Written byCatherine Offord
| 2 min read

Register for free to listen to this article
Listen with Speechify
0:00
2:00
Share

Newly generated (red) and mature (green) granule cells in the dentate gyrus region of a mouse brain.NATHAN DANIELSON/COLUMBIA UNIVERSITY'S ZUCKERMAN INSTITUTEAlthough most neurons are generated during development, some brain regions, such as the dentate gyrus region of the hippocampus, continue replacing neurons into adulthood. The function of new cells in this region has so far been unclear, primarily due to their inaccessibility in living animals. Now, using a combination of imaging techniques to observe neural activity in awake mice, researchers at Columbia University have elucidated a role for these new brain cells in learning and memory. The findings were published last week (March 10) in Neuron.

“Other studies had been unable to image the dentate gyrus, let alone the individual cells that reside within it, at this level of detail,” study coauthor Mazen Kheirbek of Columbia said in a statement. “Here, we were able to demonstrate that adult-born granule cells act differently than their mature neighbors, and determine why that difference is so critical.”

Using calcium imaging and a miniature microscope implanted into the brains of live mice, the researchers found that new neurons exhibited a burst of excitability after genesis. To probe the role of this heightened activity in memory, the team exposed the animals to various cue pairings. A particular scent might be paired with a flashing light, for example, while a tone might signify an electric shock. As ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Related Topics

Meet the Author

  • After undergraduate research with spiders at the University of Oxford and graduate research with ants at Princeton University, Catherine left arthropods and academia to become a science journalist. She has worked in various guises at The Scientist since 2016. As Senior Editor, she wrote articles for the online and print publications, and edited the magazine’s Notebook, Careers, and Bio Business sections. She reports on subjects ranging from cellular and molecular biology to research misconduct and science policy. Find more of her work at her website.

    View Full Profile
Share
Image of a woman with her hands across her stomach. She has a look of discomfort on her face. There is a blown up image of her stomach next to her and it has colorful butterflies and gut bacteria all swarming within the gut.
November 2025, Issue 1

Why Do We Feel Butterflies in the Stomach?

These fluttering sensations are the brain’s reaction to certain emotions, which can be amplified or soothed by the gut’s own “bugs".

View this Issue
Olga Anczukow and Ryan Englander discuss how transcriptome splicing affects immune system function in lung cancer.

Long-Read RNA Sequencing Reveals a Regulatory Role for Splicing in Immunotherapy Responses

Pacific Biosciences logo
Research Roundtable: The Evolving World of Spatial Biology

Research Roundtable: The Evolving World of Spatial Biology

Conceptual cartoon image of gene editing technology

Exploring the State of the Art in Gene Editing Techniques

Bio-Rad
Conceptual image of a doctor holding a brain puzzle, representing Alzheimer's disease diagnosis.

Simplifying Early Alzheimer’s Disease Diagnosis with Blood Testing

fujirebio logo

Products

Eppendorf Logo

Research on rewiring neural circuit in fruit flies wins 2025 Eppendorf & Science Prize

Evident Logo

EVIDENT's New FLUOVIEW FV5000 Redefines the Boundaries of Confocal and Multiphoton Imaging

Evident Logo

EVIDENT Launches Sixth Annual Image of the Year Contest

10x Genomics Logo

10x Genomics Launches the Next Generation of Chromium Flex to Empower Scientists to Massively Scale Single Cell Research