Observing the Nuclear Pore

Scientists visualize nuclear pore complexes for the first time, using high-speed atomic force microscopy.

Written byTanya Lewis
| 1 min read

Register for free to listen to this article
Listen with Speechify
0:00
1:00
Share

High-speed imaging of nuclear poreUNIVERSITY OF BASELUsing ultra fast-scanning atomic force microscopy (AFM), scientists have filmed nuclear pore complexes in action for the first time. The work reveals how these structures selectively bar some substances from entering the nucleus, researchers at the University of Basel, Switzerland, reported today (May 2) in Nature Nanotechnology.

“With the high-speed AFM we could, for the first time, peer inside native nuclear pore complexes only forty nanometers in size,” study coauthor Roderick Lim of the University of Basel said in a statement. “This method is a real game changer.”

Nuclear pores consist of a central transport channel surrounded by intrinsically disordered proteins called nucleoporins. Lim and his colleagues used high-speed AFM to visualize the behavior of phenylalanine-glycine nucleoporins (FG Nups) inside the nuclei of African clawed frog (Xenopus laevis) cells at a resolution of about 100 milliseconds. To access the nuclear pore at such high resolution, the researchers had to grow ultra-sharp carbon nanofibers on the AFM probes.

AFM imaging revealed how the FG Nups rapidly expand and contract, like tentacles, to form ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Related Topics

Meet the Author

Share
Illustration of a developing fetus surrounded by a clear fluid with a subtle yellow tinge, representing amniotic fluid.
January 2026

What Is the Amniotic Fluid Composed of?

The liquid world of fetal development provides a rich source of nutrition and protection tailored to meet the needs of the growing fetus.

View this Issue
Redefining Immunology Through Advanced Technologies

Redefining Immunology Through Advanced Technologies

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Beckman Coulter Logo
Skip the Wait for Protein Stability Data with Aunty

Skip the Wait for Protein Stability Data with Aunty

Unchained Labs
Graphic of three DNA helices in various colors

An Automated DNA-to-Data Framework for Production-Scale Sequencing

illumina

Products

nuclera logo

Nuclera eProtein Discovery System installed at leading Universities in Taiwan

Brandtech Logo

BRANDTECH Scientific Introduces the Transferpette® pro Micropipette: A New Twist on Comfort and Control

Biotium Logo

Biotium Launches GlycoLiner™ Cell Surface Glycoprotein Labeling Kits for Rapid and Selective Cell Surface Imaging

Colorful abstract spiral dot pattern on a black background

Thermo Scientific X and S Series General Purpose Centrifuges

Thermo Fisher Logo