Oliver Smithies, Technologist Behind Knockout Mice, Dies

The Nobel laureate and Lasker awardee developed tools that facilitated decades of genetics research, including starch gel electrophoresis and gene targeting.

| 3 min read

Register for free to listen to this article
Listen with Speechify
0:00
3:00
Share

Oliver Smithies at the 2010 Nobel Laureate Meeting at LindauWIKIMEDIA, MAPOSOliver Smithies, the technologist who shared a Nobel Prize in Physiology or Medicine in 2007 for his hand in developing tools that could knock out specific genetic components in model organisms, died on Tuesday (January 10) after a brief illness at the age of 91.

Prior to winning a Nobel Prize, Smithies—who also invented starch gel electrophoresis —received a Lasker Basic Medical Research Award in 2001 for the development of gene targeting, enabling researchers to create thousands of strains of genetically altered mice.

Smithies’ colleagues remembered him as an adept motivator, able to inspire in others the same passion that marked his own career. Bradley Popovich, Smithies’ postdoc in the late 1980s, said that Smithies’ ability as a teacher was a logical outgrowth of his drive to innovate. “He did things that others could only dream of, and then he was able to teach others how to do them,” said Popovich, who is now a genomic health strategy consultant at Genome British Columbia. “He led by example, and I admire ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Keywords

Meet the Author

  • Bob Grant

    From 2017 to 2022, Bob Grant was Editor in Chief of The Scientist, where he started in 2007 as a Staff Writer.
Share
May digest 2025 cover
May 2025, Issue 1

Study Confirms Safety of Genetically Modified T Cells

A long-term study of nearly 800 patients demonstrated a strong safety profile for T cells engineered with viral vectors.

View this Issue
iStock

TaqMan Probe & Assays: Unveil What's Possible Together

Thermo Fisher Logo
Meet Aunty and Tackle Protein Stability Questions in Research and Development

Meet Aunty and Tackle Protein Stability Questions in Research and Development

Unchained Labs
Detecting Residual Cell Line-Derived DNA with Droplet Digital PCR

Detecting Residual Cell Line-Derived DNA with Droplet Digital PCR

Bio-Rad
How technology makes PCR instruments easier to use.

Making Real-Time PCR More Straightforward

Thermo Fisher Logo

Products

fujirebio-square-logo

Fujirebio Receives Marketing Clearance for Lumipulse® G pTau 217/ β-Amyloid 1-42 Plasma Ratio In-Vitro Diagnostic Test

The Scientist Placeholder Image

Biotium Launches New Phalloidin Conjugates with Extended F-actin Staining Stability for Greater Imaging Flexibility

Leica Microsystems Logo

Latest AI software simplifies image analysis and speeds up insights for scientists

BioSkryb Genomics Logo

BioSkryb Genomics and Tecan introduce a single-cell multiomics workflow for sequencing-ready libraries in under ten hours