Oliver Smithies, Technologist Behind Knockout Mice, Dies

The Nobel laureate and Lasker awardee developed tools that facilitated decades of genetics research, including starch gel electrophoresis and gene targeting.

Written byBob Grant
| 3 min read

Register for free to listen to this article
Listen with Speechify
0:00
3:00
Share

Oliver Smithies at the 2010 Nobel Laureate Meeting at LindauWIKIMEDIA, MAPOSOliver Smithies, the technologist who shared a Nobel Prize in Physiology or Medicine in 2007 for his hand in developing tools that could knock out specific genetic components in model organisms, died on Tuesday (January 10) after a brief illness at the age of 91.

Prior to winning a Nobel Prize, Smithies—who also invented starch gel electrophoresis —received a Lasker Basic Medical Research Award in 2001 for the development of gene targeting, enabling researchers to create thousands of strains of genetically altered mice.

Smithies’ colleagues remembered him as an adept motivator, able to inspire in others the same passion that marked his own career. Bradley Popovich, Smithies’ postdoc in the late 1980s, said that Smithies’ ability as a teacher was a logical outgrowth of his drive to innovate. “He did things that others could only dream of, and then he was able to teach others how to do them,” said Popovich, who is now a genomic health strategy consultant at Genome British Columbia. “He led by example, and I admire ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Related Topics

Meet the Author

  • From 2017 to 2022, Bob Grant was Editor in Chief of The Scientist, where he started in 2007 as a Staff Writer. Before joining the team, he worked as a reporter at Audubon and earned a master’s degree in science journalism from New York University. In his previous life, he pursued a career in science, getting a bachelor’s degree in wildlife biology from Montana State University and a master’s degree in marine biology from the College of Charleston in South Carolina. Bob edited Reading Frames and other sections of the magazine.

    View Full Profile
Share
Illustration of a developing fetus surrounded by a clear fluid with a subtle yellow tinge, representing amniotic fluid.
January 2026, Issue 1

What Is the Amniotic Fluid Composed of?

The liquid world of fetal development provides a rich source of nutrition and protection tailored to meet the needs of the growing fetus.

View this Issue
Skip the Wait for Protein Stability Data with Aunty

Skip the Wait for Protein Stability Data with Aunty

Unchained Labs
Graphic of three DNA helices in various colors

An Automated DNA-to-Data Framework for Production-Scale Sequencing

illumina
Exploring Cellular Organization with Spatial Proteomics

Exploring Cellular Organization with Spatial Proteomics

Abstract illustration of spheres with multiple layers, representing endoderm, ectoderm, and mesoderm derived organoids

Organoid Origins and How to Grow Them

Thermo Fisher Logo

Products

Brandtech Logo

BRANDTECH Scientific Introduces the Transferpette® pro Micropipette: A New Twist on Comfort and Control

Biotium Logo

Biotium Launches GlycoLiner™ Cell Surface Glycoprotein Labeling Kits for Rapid and Selective Cell Surface Imaging

Colorful abstract spiral dot pattern on a black background

Thermo Scientific X and S Series General Purpose Centrifuges

Thermo Fisher Logo
Abstract background with red and blue laser lights

VANTAstar Flexible microplate reader with simplified workflows

BMG LABTECH