Opinion: No, AI Will Not Replace Radiologists

The adoption of machine-learning techniques to aid in diagnosis should be done with radiologists’ guidance.

Written byPhil Shaffer
| 4 min read
Register for free to listen to this article
Listen with Speechify
0:00
4:00
Share

Mutaz Musa’s recent opinion piece in The Scientist predicts that AI will replace radiologists as interpreters of medical images. As a radiologist for the past 38 years, I disagree. It is impossible for me to argue that AI software will never (as in, within millennia) be able to perform at a human level. Instead, I will argue a much more tightly defined set of premises: A) Our function is far more than simply recognizing white spots, something that does not appear to be understood by those predicting our replacement, and B) such predictions being aggressively promoted can be harmful to the health of both patients and the healthcare system.

Premise one: Most think that seeing spots is our work. Actually, knowing what spots are and what they mean in a specific patient is the true work of radiologists.

To illustrate, consider this image:

I sent this image to be processed ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here
July Digest 2025
July 2025, Issue 1

What Causes an Earworm?

Memory-enhancing neural networks may also drive involuntary musical loops in the brain.

View this Issue
Screening 3D Brain Cell Cultures for Drug Discovery

Screening 3D Brain Cell Cultures for Drug Discovery

Explore synthetic DNA’s many applications in cancer research

Weaving the Fabric of Cancer Research with Synthetic DNA

Twist Bio 
Illustrated plasmids in bright fluorescent colors

Enhancing Elution of Plasmid DNA

cytiva logo
An illustration of green lentiviral particles.

Maximizing Lentivirus Recovery

cytiva logo

Products

The Scientist Placeholder Image

Sino Biological Sets New Industry Standard with ProPure Endotoxin-Free Proteins made in the USA

sartorius-logo

Introducing the iQue 5 HTS Platform: Empowering Scientists  with Unbeatable Speed and Flexibility for High Throughput Screening by Cytometry

parse_logo

Vanderbilt Selects Parse Biosciences GigaLab to Generate Atlas of Early Neutralizing Antibodies to Measles, Mumps, and Rubella

shiftbioscience

Shift Bioscience proposes improved ranking system for virtual cell models to accelerate gene target discovery