Opinion: Predicting the Efficacy of Cancer Immunotherapy

T-cell receptor repertoires could help researchers determine whether a certain treatment will work for a given cancer patient.

Written byJacob Richards
| 3 min read

Register for free to listen to this article
Listen with Speechify
0:00
3:00
Share

WIKIMEDIA, KGHCancer therapy has blossomed in the last decade with more than 185 US Food and Drug Administration (FDA)-approved drugs on the market, including multiple therapies targeting the immune system. The immune system is the body’s main defense against any malignancy, including cancer. However, most cancers have developed ways to evade the immune system by suppressing or hiding from it. Recently, researchers have begun to devise ways to turn the immune system back “on” in cancer, known as cancer immunotherapy.

The latest FDA-approved cancer immunotherapies have included multiple immune checkpoint inhibitors. To prevent inappropriate destruction of the host, the human immune system is composed of multiple checks and balances called immune checkpoints. These checkpoints consist of pathways that, when triggered, will deactivate the attacking immune cell.

Unfortunately, many cancers have devised ways of manipulating this system. One method is through the upregulation of immune checkpoint molecules, such as programmed death 1 (PD-1) and its ligand (PDL1), which deactivate T cells, a main attacker of tumor cells. Checkpoint inhibitors that block the activation of these molecules, such as anti-PD-1 or PDL1 antibodies, have shown promise in the clinic, with multiple drugs already receiving FDA approval for the treatment of melanoma and lung cancer.

Unlike chemotherapy, which ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Related Topics

Meet the Author

Share
February 2026

A Stubborn Gene, a Failed Experiment, and a New Path

When experiments refuse to cooperate, you try again and again. For Rafael Najmanovich, the setbacks ultimately pushed him in a new direction.

View this Issue
Human-Relevant In Vitro Models Enable Predictive Drug Discovery

Advancing Drug Discovery with Complex Human In Vitro Models

Stemcell Technologies
Redefining Immunology Through Advanced Technologies

Redefining Immunology Through Advanced Technologies

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Beckman Coulter Logo
Conceptual multicolored vector image of cancer research, depicting various biomedical approaches to cancer therapy

Maximizing Cancer Research Model Systems

bioxcell

Products

Sino Biological Logo

Sino Biological Pioneers Life Sciences Innovation with High-Quality Bioreagents on Inside Business Today with Bill and Guiliana Rancic

Sino Biological Logo

Sino Biological Expands Research Reagent Portfolio to Support Global Nipah Virus Vaccine and Diagnostic Development

Beckman Coulter

Beckman Coulter Life Sciences Partners with Automata to Accelerate AI-Ready Laboratory Automation

Refeyn logo

Refeyn named in the Sunday Times 100 Tech list of the UK’s fastest-growing technology companies