Opinion: Science Counterculture

On taking DIYbio to the next level

Written byUsha Nair
| 3 min read

Register for free to listen to this article
Listen with Speechify
0:00
3:00
Share

FLICKR, ADONOFRIOOpen-source software paved the way for a new, community-driven development model by providing a product that was free to use and modify. This in turn fostered a business culture that was driven by support-services. That open-source principles could also herald a new era in biology was demonstrated by the successful completion of the publicly funded Human Genome Project more than a decade ago. Today, that same open, community-driven mindset continues to drive much research in the life sciences.

Soon after the human genome sequence was published, biohackers and do-it-yourself biology (DIYbio) groups came onto the scene. Among the first to demonstrate the feasibility of garage biology was Meredith Patterson, who created glow-in-the-dark yogurt by transfecting green fluorescent protein DNA into Lactobacillus. Rob Carlson, who in 2005 was among the first to spot this new development and start his own garage lab, opined in The Scientist in 2011 that garage innovation would be as important for technological advancements in biology as it was in IT. Since then, some biohackers have organized themselves into low-cost, community-based labs providing both lab space and training. However, unleashing their true technological potential will call for greater networking between these groups and borrowing concepts from business incubator models and ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Related Topics

Meet the Author

Share
Illustration of a developing fetus surrounded by a clear fluid with a subtle yellow tinge, representing amniotic fluid.
January 2026, Issue 1

What Is the Amniotic Fluid Composed of?

The liquid world of fetal development provides a rich source of nutrition and protection tailored to meet the needs of the growing fetus.

View this Issue
Skip the Wait for Protein Stability Data with Aunty

Skip the Wait for Protein Stability Data with Aunty

Unchained Labs
Graphic of three DNA helices in various colors

An Automated DNA-to-Data Framework for Production-Scale Sequencing

illumina
Exploring Cellular Organization with Spatial Proteomics

Exploring Cellular Organization with Spatial Proteomics

Abstract illustration of spheres with multiple layers, representing endoderm, ectoderm, and mesoderm derived organoids

Organoid Origins and How to Grow Them

Thermo Fisher Logo

Products

Brandtech Logo

BRANDTECH Scientific Introduces the Transferpette® pro Micropipette: A New Twist on Comfort and Control

Biotium Logo

Biotium Launches GlycoLiner™ Cell Surface Glycoprotein Labeling Kits for Rapid and Selective Cell Surface Imaging

Colorful abstract spiral dot pattern on a black background

Thermo Scientific X and S Series General Purpose Centrifuges

Thermo Fisher Logo
Abstract background with red and blue laser lights

VANTAstar Flexible microplate reader with simplified workflows

BMG LABTECH