CONTROLLED CHAOS: In a device built to image the spatial distribution of the phytoplankton H. akashiwo, water flowed upward along two outer chambers and spilled into a connecting horizontal chamber filled with the cells, creating two counter-rotating vortices (above, red arrows). Researchers illuminated the central plane of the chamber (green rectangle) with a laser sheet. The cells aggregated in downwelling regions, at the top of the chamber, and in the vortices’ cores (inset top right). Dead cells (not shown) were randomly distributed.COURTESY OF WILLIAM DURHAM AND ROMAN STOCKER, NATURE COMM, 4:2148, doi:10.1038/ncomms3148, 2013.
The paper
W.M. Durham et al., “Turbulence drives microscale patches of motile phytoplankton,” Nature Comm, 4:2148, doi:10.1038/ncomms3148, 2013.
Phytoplankton play a key role in oceanic food webs and produce half of the planet’s breathable oxygen. Though they are distributed globally, these microscopic, photosynthetic algae can form dense, kilometer-long patches, creating hot spots of krill and other predators that fishermen track to maximize their catches. Recent advances in high-resolution fluorometers and underwater imaging have revealed that some kinds of motile phytoplankton amass into patches at much smaller scales as well, anywhere from a fraction of a millimeter to centimeters, contradicting conventional wisdom that says ocean turbulence should evenly distribute phytoplankton at such scales.
Roman Stocker, an environmental engineer at the Massachusetts Institute of Technology, and his ...