Pet Scans

Studying tumor development and treatment in dogs and cats, in parallel with research on rodents and humans, could improve the successful translation of new cancer drugs.

Written byAmy K. LeBlanc, Nicola Mason, and Timothy M. Fan
| 5 min read

Register for free to listen to this article
Listen with Speechify
0:00
5:00
Share

© JAVIER BROSCH/SHUTTERSTOCK.COMThe vast majority of novel anticancer compounds that show promise in laboratory studies and in animal models do not make it through the rigorous and challenging translational path necessary for approval by the US Food and Drug Administration. Multiple factors contribute to the extremely low rate of successful drug development, including unexpected toxicity and/or lack of efficacy in humans, after a candidate compound has shown promise in rodent studies. As a result, researchers have begun to develop more-accurate and more-predictive model systems, such as genetically engineered murine models or patient-derived xenograft models. (See “My Mighty Mouse,” The Scientist, April 2015.) But there may be another solution to this translational problem: comparative oncology.

Studying conserved tumor subtypes across multiple species provides a unique opportunity for the scientific community to improve the drug-development pathway, specifically through the inclusion of pet dogs and cats with naturally occurring cancers. Evaluation of novel agents in such pet animals can provide valuable information regarding drug metabolism, toxicity, pharmacokinetics, pharmacodynamics, efficacy, and biomarker discovery in the context of mammalian species more similar in physiology and body size to humans. In addition, companion animals develop cancers spontaneously under normal immune surveillance mechanisms, which more faithfully recapitulate the multistep progression that occurs in people. Therefore, studying canine and feline models of cancer can generate valuable safety and efficacy data to support the further development of novel therapies.

Over the past decade, the promise of such an ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to digital editions of The Scientist, as well as TS Digest, feature stories, more than 35 years of archives, and much more!
Already a member? Login Here

Related Topics

Meet the Author

Published In

Share
Illustration of a developing fetus surrounded by a clear fluid with a subtle yellow tinge, representing amniotic fluid.
January 2026, Issue 1

What Is the Amniotic Fluid Composed of?

The liquid world of fetal development provides a rich source of nutrition and protection tailored to meet the needs of the growing fetus.

View this Issue
Skip the Wait for Protein Stability Data with Aunty

Skip the Wait for Protein Stability Data with Aunty

Unchained Labs
Graphic of three DNA helices in various colors

An Automated DNA-to-Data Framework for Production-Scale Sequencing

illumina
Exploring Cellular Organization with Spatial Proteomics

Exploring Cellular Organization with Spatial Proteomics

Abstract illustration of spheres with multiple layers, representing endoderm, ectoderm, and mesoderm derived organoids

Organoid Origins and How to Grow Them

Thermo Fisher Logo

Products

Brandtech Logo

BRANDTECH Scientific Introduces the Transferpette® pro Micropipette: A New Twist on Comfort and Control

Biotium Logo

Biotium Launches GlycoLiner™ Cell Surface Glycoprotein Labeling Kits for Rapid and Selective Cell Surface Imaging

Colorful abstract spiral dot pattern on a black background

Thermo Scientific X and S Series General Purpose Centrifuges

Thermo Fisher Logo
Abstract background with red and blue laser lights

VANTAstar Flexible microplate reader with simplified workflows

BMG LABTECH