Picking Out Patterns

Machine-learning algorithms can automate the analysis of cell images and data.

Written byKelly Rae Chi
| 7 min read

Register for free to listen to this article
Listen with Speechify
0:00
7:00
Share

CLASS PICTURES: In 2016, CellProfiler Analyst got an upgrade. The 2.0 version comes with a new Image Gallery function (top image) to explore and visualize images. Images can be dropped into the platform’s classifier window (bottom image), which is equipped with several different popular machine-learning algorithms.BIOINFORMATICS, 32:3210-12, 2016It takes a trained eye to determine whether you’ve succeeded in turning a skin cell into a stem cell, or to distinguish between two related cell populations based on a handful of their surface markers. And even when such distinctions become obvious, looking for them in thousands of samples gets tedious. The appeal of machine learning is that a computer program can take over this heavy lifting for you—and do it even better, by seeing what you can’t.

Machine learning aims to make accurate predictions from large sets of data based on prior training using a smaller set of examples. In cell biology, this could mean, for example, being able to predict a cell’s phase or its identity based on its shape, size, or staining pattern.

Cell biology will increasingly rely on machine learning and other computational approaches as automated fluorescence microscopy (high-content screening) continues to capture massive sets of images that can be mined in multiple ways. Imaging applications of machine learning work by breaking an image down into numerical or other descriptors, called “features.” The algorithm then selects and classifies those features. In a branch of machine-learning methods called supervised learning, those classifications are tested for accuracy by measuring against the ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to digital editions of The Scientist, as well as TS Digest, feature stories, more than 35 years of archives, and much more!
Already a member? Login Here

Related Topics

Meet the Author

Published In

May 2017

Rapid Evolution

Genetic change within populations can happen in mere generations

Share
Illustration of a developing fetus surrounded by a clear fluid with a subtle yellow tinge, representing amniotic fluid.
January 2026, Issue 1

What Is the Amniotic Fluid Composed of?

The liquid world of fetal development provides a rich source of nutrition and protection tailored to meet the needs of the growing fetus.

View this Issue
Skip the Wait for Protein Stability Data with Aunty

Skip the Wait for Protein Stability Data with Aunty

Unchained Labs
Graphic of three DNA helices in various colors

An Automated DNA-to-Data Framework for Production-Scale Sequencing

illumina
Exploring Cellular Organization with Spatial Proteomics

Exploring Cellular Organization with Spatial Proteomics

Abstract illustration of spheres with multiple layers, representing endoderm, ectoderm, and mesoderm derived organoids

Organoid Origins and How to Grow Them

Thermo Fisher Logo

Products

Brandtech Logo

BRANDTECH Scientific Introduces the Transferpette® pro Micropipette: A New Twist on Comfort and Control

Biotium Logo

Biotium Launches GlycoLiner™ Cell Surface Glycoprotein Labeling Kits for Rapid and Selective Cell Surface Imaging

Colorful abstract spiral dot pattern on a black background

Thermo Scientific X and S Series General Purpose Centrifuges

Thermo Fisher Logo
Abstract background with red and blue laser lights

VANTAstar Flexible microplate reader with simplified workflows

BMG LABTECH