Pigeons Can Switch Tasks More Quickly than Humans

The birds’ ability to multitask may be attributable to a more densely packed cerebral cortex, scientists propose.

Written byJef Akst
| 2 min read

Register for free to listen to this article
Listen with Speechify
0:00
2:00
Share

FLICKR, JIN KEMOOLERecent research has demonstrated that many bird species have high-order cognitive processing abilities comparable to primates. Sure enough, in a new study, when researchers asked pigeons and humans to switch between two activities as quickly as possible, they found that the birds performed just as well as, and sometimes even better than, the people. The scientists say the results emphasize that the brain region once thought to be required for such capabilities in humans may not be necessary.

“For a long time, scientists used to believe the mammalian cerebral cortex to be the anatomical cause of cognitive ability,” coauthor Sara Letzner of Ruhr-Universität Bochum says in a press release. But birds have no cortex. “That means the structure of the mammalian cortex cannot be decisive for complex cognitive functions such as multitasking.”

Instead, pigeons have a brain region known as the pallium, which, while it doesn’t have the layered structure of the human cortex, does have a high density of neurons—with about six times more cells per cubic millimeter than the human brain. This means that pigeon neurons are about 50 percent closer together than human neurons, which may allow for electrical signals to be relayed at a faster rate.

In this study, ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Related Topics

Meet the Author

  • Jef (an unusual nickname for Jennifer) got her master’s degree from Indiana University in April 2009 studying the mating behavior of seahorses. After four years of diving off the Gulf Coast of Tampa and performing behavioral experiments at the Tennessee Aquarium in Chattanooga, she left research to pursue a career in science writing. As The Scientist's managing editor, Jef edited features and oversaw the production of the TS Digest and quarterly print magazine. In 2022, her feature on uterus transplantation earned first place in the trade category of the Awards for Excellence in Health Care Journalism. She is a member of the National Association of Science Writers.

    View Full Profile
Share
July Digest 2025
July 2025, Issue 1

What Causes an Earworm?

Memory-enhancing neural networks may also drive involuntary musical loops in the brain.

View this Issue
Accelerating Recombinase Reprogramming with Machine Learning

Accelerating Recombinase Reprogramming with Machine Learning

Genome Modeling and Design: From the Molecular to Genome Scale

Genome Modeling and Design: From the Molecular to Genome Scale

Twist Bio 
Screening 3D Brain Cell Cultures for Drug Discovery

Screening 3D Brain Cell Cultures for Drug Discovery

DNA and pills, conceptual illustration of the relationship between genetics and therapeutic development

Multiplexing PCR Technologies for Biopharmaceutical Research

Thermo Fisher Logo

Products

waters-logo

Waters and BD's Biosciences & Diagnostic Solutions Business to Combine, Creating a Life Science and Diagnostics Leader Focused on Regulated, High-Volume Testing

zymo-research-logo

Zymo Research Partners with Harvard University to Bring the BioFestival to Cambridge, Empowering World-class Research

10x-genomics-logo

10x Genomics and A*STAR Genome Institute of Singapore Launch TISHUMAP Study to Advance AI-Driven Drug Target Discovery

The Scientist Placeholder Image

Sino Biological Sets New Industry Standard with ProPure Endotoxin-Free Proteins made in the USA