Plant Cell Walls Can Control Growth in the Dark

To maintain an energy-saving growth strategy in the absence of light, seedlings need signals generated by pectin in their cell walls.

kerry grens
| 3 min read

Register for free to listen to this article
Listen with Speechify
0:00
3:00
Share

DARK SIDE: Plants use different growth mechanisms in dark and light conditions, called skotomorphogenesis and photomorphogenesis, respectively. A new study suggests pectin fragments in the cell wall signal other cells to maintain skotomorphogenesis in darkness. From these results, a model has emerged in which light somehow interrupts this pectin-based signaling so that photomorphogenesis can commence.© JULIA MOORE

The paper
S.A. Sinclair et al., “Etiolated seedling development requires repression of photomorphogenesis by a small cell-wall-derived dark signal,” Curr Biol, 27:3403-18.e7, 2017.

Plants don’t always need sunlight to grow. Through a process called skotomorphogenesis, seedlings germinated in the dark—say, too far under the soil surface—will stretch out into long, pale shoots, searching for light. Think of the spindly bean sprouts you might buy at the store, offers Ute Krämer, a plant physiologist at Ruhr-Universität Bochum in Germany. It’s an energy-saving tactic to get plants to the light. Once they do get there, they switch irreversibly to light-driven growth called photomorphogenesis—spreading out their roots and developing their leaves.

Krämer says that while the cellular components governing photomorphogenesis have been understood for decades, the cell-to-cell signaling ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to digital editions of The Scientist, as well as TS Digest, feature stories, more than 35 years of archives, and much more!
Already a member? Login Here

Keywords

Meet the Author

  • kerry grens

    Kerry Grens

    Kerry served as The Scientist’s news director until 2021. Before joining The Scientist in 2013, she was a stringer for Reuters Health, the senior health and science reporter at WHYY in Philadelphia, and the health and science reporter at New Hampshire Public Radio. Kerry got her start in journalism as a AAAS Mass Media fellow at KUNC in Colorado. She has a master’s in biological sciences from Stanford University and a biology degree from Loyola University Chicago.

Published In

February 2018

Plant Science to the Rescue

Research on plant microbiomes and viruses could save our food supply

Share
Image of a woman in a microbiology lab whose hair is caught on fire from a Bunsen burner.
April 1, 2025, Issue 1

Bunsen Burners and Bad Hair Days

Lab safety rules dictate that one must tie back long hair. Rosemarie Hansen learned the hard way when an open flame turned her locks into a lesson.

View this Issue
Characterizing Immune Memory to COVID-19 Vaccination

Characterizing Immune Memory to COVID-19 Vaccination

10X Genomics
Pairing Protein Engineering and Cellular Assays

Pairing Protein Engineering and Cellular Assays

Lonza
Faster Fluid Measurements for Formulation Development

Meet Honeybun and Breeze Through Viscometry in Formulation Development

Unchained Labs
Conceptual image of biochemical laboratory sample preparation showing glassware and chemical formulas in the foreground and a scientist holding a pipette in the background.

Taking the Guesswork Out of Quality Control Standards

sartorius logo

Products

Metrion Biosciences Logo

Metrion Biosciences launches NaV1.9 high-throughput screening assay to strengthen screening portfolio and advance research on new medicines for pain

Biotium Logo

Biotium Unveils New Assay Kit with Exceptional RNase Detection Sensitivity

Atelerix

Atelerix signs exclusive agreement with MineBio to establish distribution channel for non-cryogenic cell preservation solutions in China

Green Cooling

Thermo Scientific™ Centrifuges with GreenCool Technology

Thermo Fisher Logo