Plant Cell Walls Can Control Growth in the Dark

To maintain an energy-saving growth strategy in the absence of light, seedlings need signals generated by pectin in their cell walls.

Written byKerry Grens
| 3 min read

Register for free to listen to this article
Listen with Speechify
0:00
3:00
Share

DARK SIDE: Plants use different growth mechanisms in dark and light conditions, called skotomorphogenesis and photomorphogenesis, respectively. A new study suggests pectin fragments in the cell wall signal other cells to maintain skotomorphogenesis in darkness. From these results, a model has emerged in which light somehow interrupts this pectin-based signaling so that photomorphogenesis can commence.© JULIA MOORE

The paper
S.A. Sinclair et al., “Etiolated seedling development requires repression of photomorphogenesis by a small cell-wall-derived dark signal,” Curr Biol, 27:3403-18.e7, 2017.

Plants don’t always need sunlight to grow. Through a process called skotomorphogenesis, seedlings germinated in the dark—say, too far under the soil surface—will stretch out into long, pale shoots, searching for light. Think of the spindly bean sprouts you might buy at the store, offers Ute Krämer, a plant physiologist at Ruhr-Universität Bochum in Germany. It’s an energy-saving tactic to get plants to the light. Once they do get there, they switch irreversibly to light-driven growth called photomorphogenesis—spreading out their roots and developing their leaves.

Krämer says that while the cellular components governing photomorphogenesis have been understood for decades, the cell-to-cell signaling ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to digital editions of The Scientist, as well as TS Digest, feature stories, more than 35 years of archives, and much more!
Already a member? Login Here

Related Topics

Meet the Author

  • kerry grens

    Kerry served as The Scientist’s news director until 2021. Before joining The Scientist in 2013, she was a stringer for Reuters Health, the senior health and science reporter at WHYY in Philadelphia, and the health and science reporter at New Hampshire Public Radio. Kerry got her start in journalism as a AAAS Mass Media fellow at KUNC in Colorado. She has a master’s in biological sciences from Stanford University and a biology degree from Loyola University Chicago.

    View Full Profile

Published In

February 2018

Plant Science to the Rescue

Research on plant microbiomes and viruses could save our food supply

Share
Illustration of a developing fetus surrounded by a clear fluid with a subtle yellow tinge, representing amniotic fluid.
January 2026, Issue 1

What Is the Amniotic Fluid Composed of?

The liquid world of fetal development provides a rich source of nutrition and protection tailored to meet the needs of the growing fetus.

View this Issue
Skip the Wait for Protein Stability Data with Aunty

Skip the Wait for Protein Stability Data with Aunty

Unchained Labs
Graphic of three DNA helices in various colors

An Automated DNA-to-Data Framework for Production-Scale Sequencing

illumina
Exploring Cellular Organization with Spatial Proteomics

Exploring Cellular Organization with Spatial Proteomics

Abstract illustration of spheres with multiple layers, representing endoderm, ectoderm, and mesoderm derived organoids

Organoid Origins and How to Grow Them

Thermo Fisher Logo

Products

Brandtech Logo

BRANDTECH Scientific Introduces the Transferpette® pro Micropipette: A New Twist on Comfort and Control

Biotium Logo

Biotium Launches GlycoLiner™ Cell Surface Glycoprotein Labeling Kits for Rapid and Selective Cell Surface Imaging

Colorful abstract spiral dot pattern on a black background

Thermo Scientific X and S Series General Purpose Centrifuges

Thermo Fisher Logo
Abstract background with red and blue laser lights

VANTAstar Flexible microplate reader with simplified workflows

BMG LABTECH