Plant Cell Walls Can Control Growth in the Dark

To maintain an energy-saving growth strategy in the absence of light, seedlings need signals generated by pectin in their cell walls.

kerry grens
| 3 min read

Register for free to listen to this article
Listen with Speechify
0:00
3:00
Share

DARK SIDE: Plants use different growth mechanisms in dark and light conditions, called skotomorphogenesis and photomorphogenesis, respectively. A new study suggests pectin fragments in the cell wall signal other cells to maintain skotomorphogenesis in darkness. From these results, a model has emerged in which light somehow interrupts this pectin-based signaling so that photomorphogenesis can commence.© JULIA MOORE

The paper
S.A. Sinclair et al., “Etiolated seedling development requires repression of photomorphogenesis by a small cell-wall-derived dark signal,” Curr Biol, 27:3403-18.e7, 2017.

Plants don’t always need sunlight to grow. Through a process called skotomorphogenesis, seedlings germinated in the dark—say, too far under the soil surface—will stretch out into long, pale shoots, searching for light. Think of the spindly bean sprouts you might buy at the store, offers Ute Krämer, a plant physiologist at Ruhr-Universität Bochum in Germany. It’s an energy-saving tactic to get plants to the light. Once they do get there, they switch irreversibly to light-driven growth called photomorphogenesis—spreading out their roots and developing their leaves.

Krämer says that while the cellular components governing photomorphogenesis have been understood for decades, the cell-to-cell signaling ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to digital editions of The Scientist, as well as TS Digest, feature stories, more than 35 years of archives, and much more!
Already a member? Login Here

Keywords

Meet the Author

  • kerry grens

    Kerry Grens

    Kerry served as The Scientist’s news director until 2021. Before joining The Scientist in 2013, she was a stringer for Reuters Health, the senior health and science reporter at WHYY in Philadelphia, and the health and science reporter at New Hampshire Public Radio. Kerry got her start in journalism as a AAAS Mass Media fellow at KUNC in Colorado. She has a master’s in biological sciences from Stanford University and a biology degree from Loyola University Chicago.

Published In

February 2018

Plant Science to the Rescue

Research on plant microbiomes and viruses could save our food supply

Share
May digest 2025 cover
May 2025, Issue 1

Study Confirms Safety of Genetically Modified T Cells

A long-term study of nearly 800 patients demonstrated a strong safety profile for T cells engineered with viral vectors.

View this Issue
iStock

TaqMan Probe & Assays: Unveil What's Possible Together

Thermo Fisher Logo
Meet Aunty and Tackle Protein Stability Questions in Research and Development

Meet Aunty and Tackle Protein Stability Questions in Research and Development

Unchained Labs
Detecting Residual Cell Line-Derived DNA with Droplet Digital PCR

Detecting Residual Cell Line-Derived DNA with Droplet Digital PCR

Bio-Rad
How technology makes PCR instruments easier to use.

Making Real-Time PCR More Straightforward

Thermo Fisher Logo

Products

The Scientist Placeholder Image

Biotium Launches New Phalloidin Conjugates with Extended F-actin Staining Stability for Greater Imaging Flexibility

Leica Microsystems Logo

Latest AI software simplifies image analysis and speeds up insights for scientists

BioSkryb Genomics Logo

BioSkryb Genomics and Tecan introduce a single-cell multiomics workflow for sequencing-ready libraries in under ten hours

iStock

Agilent BioTek Cytation C10 Confocal Imaging Reader

agilent technologies logo