Platelets Fan Inflammation

The circulating blood cells bind to neutrophils, prompting inflammation-related activity in these immune cell partners.

Written byKate Yandell
| 4 min read

Register for free to listen to this article
Listen with Speechify
0:00
4:00
Share

Blood vessel with neutrophils (green) and activated platelets (red)CNIC

During a local inflammatory response, white blood cells called neutrophils bind to the sides of blood vessels and crawl along them. This allows neutrophils to migrate toward infection: the cells find favorable locations to exit the blood vessels and migrate into infected tissues, where they engulf pathogens. Initiating this process requires that activated platelets bind to a protein called PSGL-1 that neutrophils project into the blood stream like antennae, according to a paper published today (December 4) in Science. When neutrophils are unable to bind to platelets, they fail to migrate normally, and inflammation is reduced.

“It’s a very interesting concept that platelets would be so important in inflammation and in regulating neutrophil biology,” said Paul Kubes, an immunologist at the University of Calgary in ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here
Illustration of a developing fetus surrounded by a clear fluid with a subtle yellow tinge, representing amniotic fluid.
January 2026, Issue 1

What Is the Amniotic Fluid Composed of?

The liquid world of fetal development provides a rich source of nutrition and protection tailored to meet the needs of the growing fetus.

View this Issue
Skip the Wait for Protein Stability Data with Aunty

Skip the Wait for Protein Stability Data with Aunty

Unchained Labs
Graphic of three DNA helices in various colors

An Automated DNA-to-Data Framework for Production-Scale Sequencing

illumina
Exploring Cellular Organization with Spatial Proteomics

Exploring Cellular Organization with Spatial Proteomics

Abstract illustration of spheres with multiple layers, representing endoderm, ectoderm, and mesoderm derived organoids

Organoid Origins and How to Grow Them

Thermo Fisher Logo

Products

Brandtech Logo

BRANDTECH Scientific Introduces the Transferpette® pro Micropipette: A New Twist on Comfort and Control

Biotium Logo

Biotium Launches GlycoLiner™ Cell Surface Glycoprotein Labeling Kits for Rapid and Selective Cell Surface Imaging

Colorful abstract spiral dot pattern on a black background

Thermo Scientific X and S Series General Purpose Centrifuges

Thermo Fisher Logo
Abstract background with red and blue laser lights

VANTAstar Flexible microplate reader with simplified workflows

BMG LABTECH