Precisely Placed

Vein patterns in the wings of developing fruit flies never vary by more than the width of a single cell.

Written byJyoti Madhusoodanan
| 2 min read

Register for free to listen to this article
Listen with Speechify
0:00
2:00
Share

RIGID CONSTRUCTION: The wing vein patterns of two flies deviate from one another by a width no greater than half a cell.THOMAS GREGOR

The paper L. Abouchar et al., “Fly wing vein patterns have spatial reproducibility of a single cell,” J R Soc Interface, 11:20140443, 2014. The embryo Multicellular organisms faithfully re-create the patterns of complex body structures from one generation to the next. Thomas Gregor’s lab at Princeton University previously showed that the initial body plan of three-hour-old fruit fly (Drosophila melanogaster) embryos varied, from one embryo to the next, by a total width no greater than half of a cell. This led Gregor to wonder whether wing patterns, which develop in 10-day-old flies, are just as precise. The wing Gregor and his colleagues used computer analysis and superimposition to measure and compare wing vein patterns in fruit flies. Even when grown at different temperatures, genetically similar ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to digital editions of The Scientist, as well as TS Digest, feature stories, more than 35 years of archives, and much more!
Already a member? Login Here
Illustration of a developing fetus surrounded by a clear fluid with a subtle yellow tinge, representing amniotic fluid.
January 2026, Issue 1

What Is the Amniotic Fluid Composed of?

The liquid world of fetal development provides a rich source of nutrition and protection tailored to meet the needs of the growing fetus.

View this Issue
Skip the Wait for Protein Stability Data with Aunty

Skip the Wait for Protein Stability Data with Aunty

Unchained Labs
Graphic of three DNA helices in various colors

An Automated DNA-to-Data Framework for Production-Scale Sequencing

illumina
Exploring Cellular Organization with Spatial Proteomics

Exploring Cellular Organization with Spatial Proteomics

Abstract illustration of spheres with multiple layers, representing endoderm, ectoderm, and mesoderm derived organoids

Organoid Origins and How to Grow Them

Thermo Fisher Logo

Products

Brandtech Logo

BRANDTECH Scientific Introduces the Transferpette® pro Micropipette: A New Twist on Comfort and Control

Biotium Logo

Biotium Launches GlycoLiner™ Cell Surface Glycoprotein Labeling Kits for Rapid and Selective Cell Surface Imaging

Colorful abstract spiral dot pattern on a black background

Thermo Scientific X and S Series General Purpose Centrifuges

Thermo Fisher Logo
Abstract background with red and blue laser lights

VANTAstar Flexible microplate reader with simplified workflows

BMG LABTECH