Prime Time for Digital PCR

A rundown of tools on the market and in development

Written byKelly Rae Chi
| 7 min read

Register for free to listen to this article
Listen with Speechify
0:00
7:00
Share

Integrated fluidic circuitsFLUIDIGM CORPORATION

In the past few years, digital PCR has been used to detect and quantify cancer-causing genes in patients’ cells, viral RNA that infects bacteria, and fetal DNA in an expectant mother’s plasma—and has arguably done so better than quantitative, real-time PCR (qPCR), a mainstay of life science laboratories.

Although qPCR is here to stay, there’s much to prefer about digital PCR. Both are used to amplify, detect, and count individual nucleic acid molecules. Digital PCR is more precise, however, which makes it better for quantifying rare genetic mutations, deletions, and duplications in DNA. For example, with digital PCR it is possible to distinguish samples containing 10 copies of a gene from those with 11. In contrast, with qPCR, it is difficult to distinguish even 2 ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to digital editions of The Scientist, as well as TS Digest, feature stories, more than 35 years of archives, and much more!
Already a member? Login Here
Illustration of a developing fetus surrounded by a clear fluid with a subtle yellow tinge, representing amniotic fluid.
January 2026, Issue 1

What Is the Amniotic Fluid Composed of?

The liquid world of fetal development provides a rich source of nutrition and protection tailored to meet the needs of the growing fetus.

View this Issue
Skip the Wait for Protein Stability Data with Aunty

Skip the Wait for Protein Stability Data with Aunty

Unchained Labs
Graphic of three DNA helices in various colors

An Automated DNA-to-Data Framework for Production-Scale Sequencing

illumina
Exploring Cellular Organization with Spatial Proteomics

Exploring Cellular Organization with Spatial Proteomics

Abstract illustration of spheres with multiple layers, representing endoderm, ectoderm, and mesoderm derived organoids

Organoid Origins and How to Grow Them

Thermo Fisher Logo

Products

Brandtech Logo

BRANDTECH Scientific Introduces the Transferpette® pro Micropipette: A New Twist on Comfort and Control

Biotium Logo

Biotium Launches GlycoLiner™ Cell Surface Glycoprotein Labeling Kits for Rapid and Selective Cell Surface Imaging

Colorful abstract spiral dot pattern on a black background

Thermo Scientific X and S Series General Purpose Centrifuges

Thermo Fisher Logo
Abstract background with red and blue laser lights

VANTAstar Flexible microplate reader with simplified workflows

BMG LABTECH