Prokaryotic Microbes with Eukaryote-like Genes Found

Deep-sea microbes possess hallmarks of eukaryotic cells, hinting at a common ancestor for archaea and eukaryotes.

Written byJyoti Madhusoodanan
| 3 min read

Register for free to listen to this article
Listen with Speechify
0:00
3:00
Share

Hydrothermal vent near where Loki was found in marine sediments UNIVERSITY OF BERGEN CENTRE FOR GEOBIOLOGY, R.B. PEDERSENA newly identified group of deep sea-dwelling microbes has been classified as archaea—prokaryotic, primitive microorganisms. But these microbes harbor a suite of genes found in eukaryotes which are typically used to remodel intracellular membranes to form vesicles, or for phagocytosis. This “genomic starter kit” could have enabled ancestral forms of these microbes, named Lokiarchaea, to evolve into more complex eukaryotic cells, according to results published today (May 6) in Nature. The discovery supports the long-standing hypothesis that archaea are the ancestors of eukaryotes, and helps fill an evolutionary gap between the two groups.

“This is the most exciting and important paper on big questions about eukaryotic origins and the tree of life in years,” said evolutionary biologist Jeffrey Palmer of Indiana University, Bloomington, who was not involved with the work. “This should have a major effect on textbook treatment of these subjects.”

Since the late 1980s, all life forms have been split into three groups on the phylogenetic tree of life: bacteria, archaea, and eukaryotes. Eukaryotes and archaea have long been considered “sister groups” based on similarities in their genes and metabolic pathways. But it wasn’t clear whether eukaryotes and archaea shared a common ancestor, or if eukaryotes originated within a subset of archaea.

Thijs Ettema of Uppsala University in Sweden and his colleagues identified the new group ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here
Illustration of a developing fetus surrounded by a clear fluid with a subtle yellow tinge, representing amniotic fluid.
January 2026, Issue 1

What Is the Amniotic Fluid Composed of?

The liquid world of fetal development provides a rich source of nutrition and protection tailored to meet the needs of the growing fetus.

View this Issue
Skip the Wait for Protein Stability Data with Aunty

Skip the Wait for Protein Stability Data with Aunty

Unchained Labs
Graphic of three DNA helices in various colors

An Automated DNA-to-Data Framework for Production-Scale Sequencing

illumina
Exploring Cellular Organization with Spatial Proteomics

Exploring Cellular Organization with Spatial Proteomics

Abstract illustration of spheres with multiple layers, representing endoderm, ectoderm, and mesoderm derived organoids

Organoid Origins and How to Grow Them

Thermo Fisher Logo

Products

Brandtech Logo

BRANDTECH Scientific Introduces the Transferpette® pro Micropipette: A New Twist on Comfort and Control

Biotium Logo

Biotium Launches GlycoLiner™ Cell Surface Glycoprotein Labeling Kits for Rapid and Selective Cell Surface Imaging

Colorful abstract spiral dot pattern on a black background

Thermo Scientific X and S Series General Purpose Centrifuges

Thermo Fisher Logo
Abstract background with red and blue laser lights

VANTAstar Flexible microplate reader with simplified workflows

BMG LABTECH