Proprioception: The Sense Within

Knowing where our bodies are in space is critical for the control of our movements and for our sense of self.

| 15 min read

Register for free to listen to this article
Listen with Speechify
0:00
15:00
Share

© ISTOCK.COM/MIKKELWILLIAMIn 1971, at the age of 19, Ian Waterman suffered a bout of severe viral gastroenteritis. The illness triggered an autoimmune response that stole his ability to gauge where his limbs were in relation to their environment. As described by Columbia University neurologist Jonathan Cole, Waterman was not paralyzed; his limbs moved, but he had no control over them. He felt disembodied, as if he was floating in air.1,2

The five basic senses—sight, hearing, smell, taste, and touch—enable us to perceive the world around us. But what about sensations generated by the actions of our own bodies? As Waterman’s case demonstrates, the ability to sense our bodies is critical for telling us where we are in our surroundings as well as for the execution of normal movements. Sometimes referred to as the “sixth sense,” proprioception includes the sense of position and movement of our limbs, the senses of muscle force and effort, and the sense of balance. These senses, triggered by our everyday activities, allow us to carry out our tasks successfully, without thinking; absent feedback from proprioceptors, we, like Waterman, would be lost.

We remain largely unaware of the actions of the sense ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to digital editions of The Scientist, as well as TS Digest, feature stories, more than 35 years of archives, and much more!
Already a member? Login Here

Keywords

Meet the Author

  • Uwe Proske

    This person does not yet have a bio.
  • Simon Gandevia

    This person does not yet have a bio.

Published In

Share
3D illustration of a gold lipid nanoparticle with pink nucleic acid inside of it. Purple and teal spikes stick out from the lipid bilayer representing polyethylene glycol.
February 2025, Issue 1

A Nanoparticle Delivery System for Gene Therapy

A reimagined lipid vehicle for nucleic acids could overcome the limitations of current vectors.

View this Issue
Enhancing Therapeutic Antibody Discovery with Cross-Platform Workflows

Enhancing Therapeutic Antibody Discovery with Cross-Platform Workflows

sartorius logo
Considerations for Cell-Based Assays in Immuno-Oncology Research

Considerations for Cell-Based Assays in Immuno-Oncology Research

Lonza
An illustration of animal and tree silhouettes.

From Water Bears to Grizzly Bears: Unusual Animal Models

Taconic Biosciences
Sex Differences in Neurological Research

Sex Differences in Neurological Research

bit.bio logo

Products

Tecan Logo

Tecan introduces Veya: bringing digital, scalable automation to labs worldwide

Explore a Concise Guide to Optimizing Viral Transduction

A Visual Guide to Lentiviral Gene Delivery

Takara Bio
Inventia Life Science

Inventia Life Science Launches RASTRUM™ Allegro to Revolutionize High-Throughput 3D Cell Culture for Drug Discovery and Disease Research

An illustration of differently shaped viruses.

Detecting Novel Viruses Using a Comprehensive Enrichment Panel

Twist Bio