Putting Up Resistance

Will the public swallow science’s best solution to one of the most dangerous wheat pathogens on the planet?

kerry grens
| 12 min read

Register for free to listen to this article
Listen with Speechify
0:00
12:00
Share

PATHOGENIC PLAGUE: Stem rust fungus (Puccinia graminis, shown here on bearded wheat) has infected wheat crops for decades. Now, a new race threatens to wipe out even the most resistant strains.© NIGEL CATTLIN/SCIENCE SOURCE

Beneath a steely and frigid Minnesota sky, the warm orange glow of a greenhouse beckons me to enter. But getting inside requires special security clearance and the donning of a white Tyvek gown, and visitors must shower upon leaving. Scrambling up a snowdrift outside the glass building affords me a less encumbered peek at what’s inside: row upon row of wheat plants, riddled with a fungal pathogen that has destroyed countless hectares of the crop in Africa and, more recently, the Middle East.

“There it is, Ug99,” says Brian Steffenson, a plant pathologist at the University of Minnesota, as he taps the glass to point out the dark-red fungus flecking the leaves of the young plants. As they grow, their stems will form large pustules ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to digital editions of The Scientist, as well as TS Digest, feature stories, more than 35 years of archives, and much more!
Already a member? Login Here

Keywords

Meet the Author

  • kerry grens

    Kerry Grens

    Kerry served as The Scientist’s news director until 2021. Before joining The Scientist in 2013, she was a stringer for Reuters Health, the senior health and science reporter at WHYY in Philadelphia, and the health and science reporter at New Hampshire Public Radio. Kerry got her start in journalism as a AAAS Mass Media fellow at KUNC in Colorado. She has a master’s in biological sciences from Stanford University and a biology degree from Loyola University Chicago.

Published In

Share
A greyscale image of cells dividing.
March 2025, Issue 1

How Do Embryos Know How Fast to Develop

In mammals, intracellular clocks begin to tick within days of fertilization.

View this Issue
Discover the history, mechanics, and potential of PCR.

Become a PCR Pro

Integra Logo
3D rendered cross section of influenza viruses, showing surface proteins on the outside and single stranded RNA inside the virus

Genetic Insights Break Infectious Pathogen Barriers

Thermo Fisher Logo
A photo of sample storage boxes in an ultra-low temperature freezer.

Navigating Cold Storage Solutions

PHCbi logo 
The Immunology of the Brain

The Immunology of the Brain

Products

Sapio Sciences

Sapio Sciences Makes AI-Native Drug Discovery Seamless with NVIDIA BioNeMo

DeNovix Logo

New DeNovix Helium Nano Volume Spectrophotometer

Olink Logo

Olink® Reveal: Accessible NGS-based proteomics for every lab

Olink logo
Zymo Logo

Zymo Research Launches the Quick-16S™ Full-Length Library Prep Kit