Q&A: Confirming Next-Gen Sequencing Results with Sanger

Ambry Genetics CEO Aaron Elliott discusses his team’s recent analysis of 20,000 clinical next-generation sequencing panels.

Written byTracy Vence
| 4 min read

Register for free to listen to this article
Listen with Speechify
0:00
4:00
Share

WIKIMEDIA, BAINSCOUFor clinical purposes, next-generation sequencing (NGS) has all but replaced its methodological predecessor, Sanger sequencing. It is faster. It is cheaper. But is next-gen sequencing alone sensitive and specific enough to catch every difficult-to-detect, disease-associated variant while avoiding false-positives?

“There is significant debate within the diagnostics community regarding the necessity of confirming NGS variant calls by Sanger sequencing, considering that numerous laboratories report having 100% specificity from the NGS data alone,” Ambry Genetics Chief Executive Officer Aaron Elliott and colleagues wrote in a study published last week (October 6) in The Journal of Molecular Diagnostics.

Elliott and colleagues simulated a false-positive rate of zero when comparing the results of 20,000 hereditary cancer, NGS panels—including 47 disease-NGS alone, the researchers “missed [the] detection of 176 Sanger-confirmed variants, the majority in complex genomic regions (n = 114) and mosaic mutations (n = 7),” they reported in their paper.

In an interview with The Scientist, Elliott lamented a lack of quality-control guidelines regarding confirmatory sequencing methods among ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here
July Digest 2025
July 2025, Issue 1

What Causes an Earworm?

Memory-enhancing neural networks may also drive involuntary musical loops in the brain.

View this Issue
Screening 3D Brain Cell Cultures for Drug Discovery

Screening 3D Brain Cell Cultures for Drug Discovery

Explore synthetic DNA’s many applications in cancer research

Weaving the Fabric of Cancer Research with Synthetic DNA

Twist Bio 
Illustrated plasmids in bright fluorescent colors

Enhancing Elution of Plasmid DNA

cytiva logo
An illustration of green lentiviral particles.

Maximizing Lentivirus Recovery

cytiva logo

Products

The Scientist Placeholder Image

Sino Biological Sets New Industry Standard with ProPure Endotoxin-Free Proteins made in the USA

sartorius-logo

Introducing the iQue 5 HTS Platform: Empowering Scientists  with Unbeatable Speed and Flexibility for High Throughput Screening by Cytometry

parse_logo

Vanderbilt Selects Parse Biosciences GigaLab to Generate Atlas of Early Neutralizing Antibodies to Measles, Mumps, and Rubella

shiftbioscience

Shift Bioscience proposes improved ranking system for virtual cell models to accelerate gene target discovery