Q&A with Michael Young, Nobel Laureate

Young talks with The Scientist about studying circadian rhythms in fruit flies, the applications of his work beyond Drosophila, and winning the prize.

| 5 min read

Register for free to listen to this article
Listen with Speechify
0:00
5:00
Share

Michael Young won the Nobel prize for Physiology or Medicine for his work on circadian clocks.MARIO MORGADO / THE ROCKEFELLER UNIVERSITYToday (October 2), Rockefeller University biologist Michael Young and Brandeis University scientists Jeffrey Hall and Michael Rosbash were named co-recipients of the 2017 Nobel Prize in Physiology or Medicine for work on circadian rhythms. In 1984, Hall and Rosbash and, independently, Young, determined that a gene, period, was necessary for the maintenance of circadian rhythms in fruit flies. Young also identified two more genes that regulate period. Scientists have since discovered homologous circadian systems in mice and in humans.

Young spoke with The Scientist this afternoon.

The Scientist: In your opinion, what has been your most important scientific achievement?

Michael Young: I think if there was an early breakthrough moment, it was when we took a fly that had no behavioral rhythms, had no sleep/wake cycle, and we were able to inject purified DNA that was just the gene that we’d been working on that was from a normal fly, and were able to give rhythmicity back to a fly that previously had no rhythms. So we realized that we really could restore behavior with a gene. That was pretty exciting and sort of sent us on our way.

At that point, the next steps had everything to do with really digging into the ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Keywords

Meet the Author

  • Ashley P. Taylor

    This person does not yet have a bio.
Share
A greyscale image of cells dividing.
March 2025, Issue 1

How Do Embryos Know How Fast to Develop

In mammals, intracellular clocks begin to tick within days of fertilization.

View this Issue
Discover the history, mechanics, and potential of PCR.

Become a PCR Pro

Integra Logo
3D rendered cross section of influenza viruses, showing surface proteins on the outside and single stranded RNA inside the virus

Genetic Insights Break Infectious Pathogen Barriers

Thermo Fisher Logo
A photo of sample storage boxes in an ultra-low temperature freezer.

Navigating Cold Storage Solutions

PHCbi logo 
The Immunology of the Brain

The Immunology of the Brain

Products

Sapio Sciences

Sapio Sciences Makes AI-Native Drug Discovery Seamless with NVIDIA BioNeMo

DeNovix Logo

New DeNovix Helium Nano Volume Spectrophotometer

Olink Logo

Olink® Reveal: Accessible NGS-based proteomics for every lab

Olink logo
Zymo Logo

Zymo Research Launches the Quick-16S™ Full-Length Library Prep Kit