Ready, Set, Glow

Tagging proteins with GFP-grabbing nanobodies enables instant tracking of the proteins’ dynamics in live cells.

Written byRuth Williams
| 3 min read

Register for free to listen to this article
Listen with Speechify
0:00
3:00
Share

Visualizing the activities of proteins in live cells and organisms can yield important biological insights—from understanding when and where transcription factors are turned on in development to determining how a mutant protein’s activity differs from that of its wild-type counterpart.

The standard method for tracking real-time protein activity involves genetically fusing fluorescent reporters, such as green fluorescent protein (GFP), to target protein sequences, expressing these fusion proteins in cells, and then viewing them under a fluorescence microscope.

For many proteins this approach works well, but if the molecule of interest happens to be produced and degraded in a matter of minutes, there’s a problem. With GFP, “there’s a lag in time between the production phase and the visualization phase,” explains biologist Stephen Small of New York University. Indeed, it can take 40 minutes or so for a newly-made GFP protein to be folded and chemically modified before it starts to ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to digital editions of The Scientist, as well as TS Digest, feature stories, more than 35 years of archives, and much more!
Already a member? Login Here

Related Topics

Meet the Author

  • ruth williams

    Ruth is a freelance journalist. Before freelancing, Ruth was a news editor for the Journal of Cell Biology in New York and an assistant editor for Nature Reviews Neuroscience in London. Prior to that, she was a bona fide pipette-wielding, test tube–shaking, lab coat–shirking research scientist. She has a PhD in genetics from King’s College London, and was a postdoc in stem cell biology at Imperial College London. Today she lives and writes in Connecticut.

    View Full Profile

Published In

August 2018

Conscious Rodents?

The complex ethics of transplanting human brain organoids into rats and mice

Share
Illustration of a developing fetus surrounded by a clear fluid with a subtle yellow tinge, representing amniotic fluid.
January 2026, Issue 1

What Is the Amniotic Fluid Composed of?

The liquid world of fetal development provides a rich source of nutrition and protection tailored to meet the needs of the growing fetus.

View this Issue
Skip the Wait for Protein Stability Data with Aunty

Skip the Wait for Protein Stability Data with Aunty

Unchained Labs
Graphic of three DNA helices in various colors

An Automated DNA-to-Data Framework for Production-Scale Sequencing

illumina
Exploring Cellular Organization with Spatial Proteomics

Exploring Cellular Organization with Spatial Proteomics

Abstract illustration of spheres with multiple layers, representing endoderm, ectoderm, and mesoderm derived organoids

Organoid Origins and How to Grow Them

Thermo Fisher Logo

Products

Brandtech Logo

BRANDTECH Scientific Introduces the Transferpette® pro Micropipette: A New Twist on Comfort and Control

Biotium Logo

Biotium Launches GlycoLiner™ Cell Surface Glycoprotein Labeling Kits for Rapid and Selective Cell Surface Imaging

Colorful abstract spiral dot pattern on a black background

Thermo Scientific X and S Series General Purpose Centrifuges

Thermo Fisher Logo
Abstract background with red and blue laser lights

VANTAstar Flexible microplate reader with simplified workflows

BMG LABTECH